Skip to main content

Denitrification at Sub-Zero Temperatures in Arable Soils: A Review

  • Chapter
  • First Online:
Book cover Sustainable Agriculture

Abstract

Nitrogen (N) in agricultural fertilizers is denitrified by soil bacteria when oxygen is limited, which effectively removes plant-available N from the soil to the atmosphere. Reported denitrification rates range from 0 to 239 kg N ha − 1 yr − 1, and, depending upon environmental conditions and management, may reduce the amount of N available for crop growth by 27%. Denitrification in soils also results in emissions of nitrous oxide (N2O), which is a recognized pollutant that contributes to stratospheric ozone destruction and radiative forcing in the troposphere. Practitioners of sustainable agronomy aim to improve plant N-use efficiency and reduce emissions of the greenhouse gases by synchronizing N application and plant nutritional requirements. However, it is difficult to predict denitrification rates during and after the growing season based on current knowledge. High rates are consistently reported in irrigated cropping systems following heavy applications of fertilizer-N, but few studies report denitrification during the dormant season. Denitrification in winter may represent a significant sink for fertilizer-N in cropping systems, but further research at sub-zero soil temperatures is needed. Here, the three factors required for microbial denitrification: limited O2 availability, electron donors and electron acceptors, are reviewed based on soil research performed both above and below 0C. Gaps in the knowledge of denitrification rates in cropping systems, particularly when soils are frozen, are identified. Sustainable management of N in cropping systems such as greater N-use efficiency and lower greenhouse gas emissions could be advanced by greater understanding of denitrification in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson D.M., Hoeckstra P. (1965) Migration of interlamellar water during freezing and thawing of Wyoming bentonite, Soil Sci. Soc. Proc. 29, 498–504

    Google Scholar 

  • Aulakh M., Khera T., Doran J., Bronson K. (2001) Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure, Biol. Fert. Soils 34, 375–389

    Article  CAS  Google Scholar 

  • Aulakh M.S., Rennie D.A., Paul A. (1984) The influence of plant residues on denitrification rates in conventional and zero tilled soils, Soil Sci. Soc. Am. J. 48, 790–794

    CAS  Google Scholar 

  • Barton L., McLay C.D.A., Schipper L.A., Smith C.T. (1999) Annual denitrification rates in agricultural and forest soils: A review, Aust. J. Soil Res. 37, 1073–1093

    Article  Google Scholar 

  • Bateman E.J., Baggs E.M. (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space, Biol. Fert. oils 41, 379–388

    Article  CAS  Google Scholar 

  • Beauchamp E.G., Trevors J.T., Paul J.W. (1989) Carbon sources for bacterial denitrification, Adv. Soil Sci. 10, 113–142

    Article  CAS  Google Scholar 

  • Bouwman A.F., Van der Hoek K.W., Olivier J.G.J. (1995) Uncertainties in the global source distribution of nitrous oxide, J. Geophys. Res. 100, 2785–2800

    Article  CAS  Google Scholar 

  • Bouwman A.F., Van Drecht G., Knoop J.M., Beusen A.H.W., Meinardi C.R. (2005) Exploring changes in river nitrogen export to the world’s oceans, Global Biogeochem. Cycles 19, DOI: 10.1929/2004GB0002314

    Google Scholar 

  • Breitenbeck G.A., Bremmer J.M. (1986) Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia, Biol. Fert. Soils 2, 201–204

    Google Scholar 

  • Bullock M.S., Kemper W.D., Nelson S.D. (1988) Soil cohesion as affected by freezing, water content, time and tillage, Soil Sci. Soc. Am. J. 52, 770–776

    Google Scholar 

  • Burford J.R., Bremner J.M. (1975) Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter, Soil Biol. Biochem. 7, 389–394

    CAS  Google Scholar 

  • Calderón F.J., McCarty G.W., Van Kessel J.A.S., Reeves III J.B. (2004) Carbon and nitrogen dynamics during incubation of manured soil, Soil Sci. Soc. Am. J. 68, 1592–1599

    Google Scholar 

  • Cassman K.G., Dobermann A., Walters D.T. (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management, Ambio 31, 132–140

    PubMed  Google Scholar 

  • Christensen S., Christensen B.T. (1991) Organic matter available for denitrification in different soil fractions: effect of freeze/thaw cycles and straw disposal, J. Soil Sci. 42, 637–647

    Article  CAS  Google Scholar 

  • Christensen S., Tiedje T. (1990) Brief and vigorous N2O production by soil at spring thaw, J. Soil Sci. 41, 1–4

    Article  CAS  Google Scholar 

  • Clein J.S., Schimel J.P. (1995) Microbial activity of tundra and taiga soils at sub-zero temperatures, Soil Biol. Biochem. 9, 1231–1234

    Google Scholar 

  • Colbourn P., Iqbal M.M., Harper W. (1984) Estimation of the total gaseous nitrogen losses from clay soils under laboratory and field conditions, J. Soil Sci. 35, 11–22

    Article  CAS  Google Scholar 

  • Davidson E.A. (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, in: Roger J.E., Whitman W.G. (Eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, American Society for Microbiology, Washington, DC, pp. 219–235

    Google Scholar 

  • Davidson E.A., Seitzinger S. (2006) The enigma of progress in denitrification research, Ecol. Appl. 16, 2057–2063

    Article  Google Scholar 

  • Davidson E.A., Keller M., Erickson H.E., Verchot L.V., Veldkamp E. (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides, Bioscience 50, 667–680

    Article  Google Scholar 

  • Dobbie K.E., Smith K.A. (2003) Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables, Global Change Biol. 9, 204–218

    Article  Google Scholar 

  • Dobbie K.E., McTaggart I.P., Smith K.A. (1999) Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors, J. Geophys. Res. D: Atmospheres 104, 26891–26899

    Article  CAS  Google Scholar 

  • Dorland S., Beauchamp E.G. (1991) Denitrification and ammonification at low soil temperatures, Can. J. Soil Sci. 71, 293–303

    Article  Google Scholar 

  • Edwards A.C., Cresser M.S. (1992) Freezing and its effect on chemical and biological properties of soil, Adv. Soil Sci. 18, 59–79

    Article  CAS  Google Scholar 

  • Feng X., Nielsen L.L., Simpson M.J. (2007) Responses of soil organic matter and microorganisms to freeze-thaw cycles, Soil Biol. Biochem. 39, 2027–2037

    CAS  Google Scholar 

  • Firestone M.K., Davidson E.A. (1989) Microbial basis of NO and N2O production and consumption in soil, in: Andreae M.O., Schimel D.S. (Eds.), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, Wiley, New York, pp. 7–21

    Google Scholar 

  • Firestone M.K., Firestone R.B., Tiedje J.M. (1980) Nitrous oxide from soil denitrification: Factors controlling its biological production, Science 208, 749–751

    Article  PubMed  CAS  Google Scholar 

  • Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R. (2007) Changes in atmospheric constituents and in radiative forcing, in: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Avery K.B., Tignor M., Miller H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, NY, USA, pp. 129–234

    Google Scholar 

  • Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C.C., Green P.A., Holland E.A., Karl D.M., Michaels A.F., Porter J.H., Townsend A.R., Vöosmarty C.J. (2004) Nitrogen cycles: past, present, and future, Biogeochem. 70, 153–226

    CAS  Google Scholar 

  • Ginting D., Kessavalou A., Eghball B., Doran J.W. (2003) Greenhouse gas emissions and soil indicators four years after manure and compost applications, J. Environ. Qual. 32, 23–32

    Article  PubMed  CAS  Google Scholar 

  • Goossens A., Visscher A., Boeckx P., Cleemput O. (2001) Two-year field study on the emission of N2O from coarse and middle-textured Belgian soils with different land use, Nutr. Cycl. Agroecosys. 60, 23–34

    Article  CAS  Google Scholar 

  • Hoeckstra P. (1966) Moisture movement in soils under temperature gradients with the cold-side temperature below freezing, Water Resour. Res. 2, 241–250

    Google Scholar 

  • Hofstra N., Bouwman A. (2005) Denitrification in agricultural soils: Summarizing published data and estimating global annual rates, Nutr. Cycl. Agroecosys. 72, 267–278

    Article  Google Scholar 

  • Hulth S., Aller R.C., Gilbert F. (1999) Coupled anoxic nitrification/manganese reduction in marine sediments, Geochim. Cosmochim. Ac. 63, 49–66

    Article  CAS  Google Scholar 

  • Jarvis S., Barraclough D., Williams J., Rook A. (1991) Patterns of denitrification loss from grazed grassland: Effects of N fertilizer inputs at different sites, Plant Soil 131, 77–88

    CAS  Google Scholar 

  • Jungkunst H.F., Freibauer A., Neufeldt H., Bareth G. (2006) Nitrous oxide emissions from agricultural land use in Germany-a synthesis of available annual field data, J. Plant Nutr. Soil Sci. 169, 341–351

    Article  CAS  Google Scholar 

  • Kaiser E.A., Kohrs K., Kücke M., Schnug E., Heinemeyer O., Munch J.C. (1998) Nitrous oxide release from arable soil: Importance of N-fertilization, crops and temporal variation, Soil Biol. Biochem. 30, 1553–1563

    CAS  Google Scholar 

  • Kay B.D., Grant C.D., Groenevelt P.H. (1985) Significance of ground freezing on soil bulk density under zero tillage, Soil Sci. Soc. Am. J. 49, 973–978

    Google Scholar 

  • Kohnke H., Werkhoven C.H. (1963) Soil temperature and soil freezing as affected by an organic mulch, Soil Sci. Soc. Proc. 27, 13–17

    Google Scholar 

  • Kuypers M.M.M., Lavik G., Woebken D., Schmid M., Fuchs B.M., Amann R., Jørgensen B.B., Jetten M.S.M. (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation, Proc. Natl. Acad. Sci. (USA) 102, 6478–6483

    Article  CAS  Google Scholar 

  • Lehrsch G.G., Sojka R.E., Carter D.L., Jolley P.M. (1990) Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter, Soil Sci. Soc. Am. J. 55, 1401–1406

    Google Scholar 

  • Lessard R., Rochette P., Gregorich E.G., Pattey E., Desjardins R.L. (1996) Nitrous oxide fluxes from manure-amended soul under maize, J. Environ. Qual. 25, 1371–1377

    Article  CAS  Google Scholar 

  • Liu X.J., Mosier A.R., Halvorson A.D., Reule C.A., Zhang F.S. (2007) Dinitrogen and N2O emissions in arable soils: Effect of tillage, N source and soil moisture, Soil Biol. Biochem. 39, 2362–2370

    CAS  Google Scholar 

  • Loch J.P.G., Kay B.D. (1978) Water redistribution in partially frozen, saturated silt under several temperature gradients and overburden loads, Soil Sci. Soc. Am. J. 42, 400–406

    Google Scholar 

  • Loch J.P.G., Miller R.D. (1975) Tests of the concept of secondary frost heaving, Soil Sci. Soc. Proc. 39, 1036–1041

    Google Scholar 

  • Maggiotto S.R., Wagner-Riddle C. (2001) Winter and spring thaw measurements of N2O, NO and NOx fluxes using a micrometeorological method, Water Air Soil Poll. 1, 89–98

    CAS  Google Scholar 

  • McCarty G.W., Bremner J.M. (1993) Factors affecting the availability of organic carbon for denitrification of nitrate in subsoils, Biol. Fert. Soils 15, 132–136

    Article  CAS  Google Scholar 

  • Michaelson G.J., Ping C.L. (2003) Soil organic carbon and CO2 respiration at subzero temperature in soils of Arctic Alaska, J. Geophys. Res. 108, DOI: 10.1029/2001JD000920

    Google Scholar 

  • Mikan C.J., Schimel J.P., Doyle A.P. (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing, Soil Biol. Biochem. 34, 1785–1795

    CAS  Google Scholar 

  • Mogge B., Kaiser E., Munch J. (1999) Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhöved Lake region: Influence of organic fertilizers and land-use, Soil Biol. Biochem. 31, 1245–1252

    CAS  Google Scholar 

  • Mosier A., Guenzi W.D., Schweizer E.E. (1986) Soil losses of dinitrogen and nitrous oxide from irrigated crops in northeastern Colorado, Soil Sci. Soc. Am. J. 50, 344–348

    CAS  Google Scholar 

  • Mulvaney R.L., Khan S.A., Mulvaney C.S. (1997) Nitrogen fertilizers promote denitrification, Biol. Fert. Soils 24, 211–220

    Article  CAS  Google Scholar 

  • Myrold D.D., Tiedje T. (1985) Diffusional constraints on denitrification in soil, Soil Sci. Soc. Am. J. 49, 651–657

    CAS  Google Scholar 

  • Nieder R., Schollmayer G., Richter J. (1989) Denitrification in the rooting zone of cropped soils with regard to methodology and climate: A review, Biol. Fert. Soils 8, 219–226

    Article  CAS  Google Scholar 

  • Parkin T.B. (1987) Soil microsites as a source of denitrification variability, Soil Sci. Soc. Am. J. 51, 1194–1199

    CAS  Google Scholar 

  • Paul J.W., Beauchamp E.G., Zhang X. (1993) Nitrous oxide and nitric oxide emissions during nitrification and denitrification from manure-amended soil in the laboratory, Can. J. Soil Sci. 73, 539–553

    Article  CAS  Google Scholar 

  • Petersen S.O. (1999) Nitrous oxide emissions from manure and inorganic fertilizers applied to spring barley, J. Environ. Qual. 28, 1610–1618

    Article  CAS  Google Scholar 

  • Phillips R.L. (2007) Organic agriculture and nitrous oxide emissions at sub-zero soil temperatures, J. Environ. Qual. 36, 23–30

    Article  PubMed  CAS  Google Scholar 

  • Pikul J.L., Allmaras R.R. (1985) Hydraulic potential in unfrozen soil in response to diurnal freezing and thawing of the soil surface, Trans. ASAE 28, 164–168

    Google Scholar 

  • Pikul J.L., Zuzel J.F., Greenwalt R.N. (1986) Formation of soil frost as influenced by tillage and residue management, J. Soil Water Cons. 41, 196–199

    Google Scholar 

  • Pikul J.L., Boersma L., Rickman R.W. (1989) Temperature and water profiles during diurnal soil freezing and thawing: Field measurements and simulation, Soil Sci. Soc. Am. J. 53, 3–10

    Google Scholar 

  • Prather M., Ehhalt D., Dentener F., Derwent J., Dlugokencky E., Holland E.A., Isaksen I., Katima J., Kirchhoff P., Matson P.A., Midgley P., Wang M. (2001). Atmospheric chemistry and greenhouse gases, in: Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. (Eds.), Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp. 240–287

    Google Scholar 

  • Price P.B., Sowers T. (2004) Temperature dependence of metabolic rates of microbial growth, maintenance, and survival, Proc. Natl Acad. Sci. 101, 4631–4636

    Article  PubMed  CAS  Google Scholar 

  • Priemé A., Christensen S. (2001) Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils, Soil Biol. Biochem. 33, 2083–2091

    Google Scholar 

  • Rivkina E., Friedmann E., McKay C., Gilichinsky D. (2000) Metabolic activity of permafrost bacteria below the freezing point, Appl. Environ. Microbiol. 66, 3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Röver M., Heinemeyer O., Kaiser E.A. (1998) Microbial induced nitrous oxide emissions from an arable soil during winter, Soil Biol. Biochem. 30, 1859–1865

    Google Scholar 

  • Ruser R., Flessa H., Schilling R., Beese F., Munch J.C. (2001) Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil, Nutr. Cycl. Agroecosys. 59, 177–191

    Article  Google Scholar 

  • Sainz Rozas H.R., Echeverría H.E., Picone L.I. (2001) Denitrification in maize under no-tillage: Effect of nitrogen rate and application time, Soil Sci. Soc. Am. J. 65, 1314–1323

    Google Scholar 

  • Schimel D.S., Clein J.S. (1996) Microbial response to freeze-thaw cycles in tundra and taiga soils, Soil Biol. Biochem. 28, 1061–1066

    Google Scholar 

  • Seitzinger S., Harrison J.A., Bohlke J.K., bouwman A.F., Lowrance R., Peterson B., Tobias C., Van Drecht G. (2006) Denitrification across landscapes and waterscapes: A synthesis, Ecol. Appl. 16, 2064–2090

    Google Scholar 

  • Sexstone A.J., Revsbech N.P., Parkin T.B., Tiedje T. (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates, Soil Sci. Soc. Am. J. 49, 645–651

    CAS  Google Scholar 

  • Sexstone A.J., Parkin T.B., Tiedje T. (1988) Denitrification response to soil wetting in aggregated and unaggregated soil, Soil Biol. Biochem. 20, 767–769

    CAS  Google Scholar 

  • Skogland T., Lomeland S., Goksoyr J. (1988) Respiratory burst after freezing and thawing of soil: Experiments with soil bacteria, Soil Biol. Biochem. 20, 851–856

    Google Scholar 

  • Smith K.A. (1980) A model of the extent of anaerobic zones in aggregated soils, and its potential application to estimates of denitrification, J. Soil Sci. 31, 263–277

    Article  CAS  Google Scholar 

  • Teepe R., Vor A., Beese F., Ludwig B. (2004) Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing, Eur. J. Soil Sci. 55, 357–365

    Article  CAS  Google Scholar 

  • van Bochove E., Prévost D., Pelletier F. (2000) Effects of freeze thaw and soil structure on nitrous oxide produced in a clay Soil, Soil Sci. Soc. Am. J. 4, 138–143

    Google Scholar 

  • Wagner-Riddle J.C., Thurtell G.W., Kidd G.K., Beauchamp E.G., Sweetman R. (1997) Estimates of nitrous oxide emissions from agricultural fields over 28 months, Can. J. Soil Sci. 77, 135–144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to Drs. Joe Pikul, Steve Merrill, Bill Schlesinger, Steve Whalen, and Mark Liebig for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca L. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Phillips, R.L. (2009). Denitrification at Sub-Zero Temperatures in Arable Soils: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_5

Download citation

Publish with us

Policies and ethics