Skip to main content

Linking Human RecQ Helicases to DNA Damage Response and Aging

  • Chapter
  • First Online:
The DNA Damage Response: Implications on Cancer Formation and Treatment

Abstract

Maintenance of genome integrity is crucial for the survival of an organism. Increasing evidence suggests that defective DNA damage response promotes genome instability and accelerates age-related degeneration. The RecQ family of DNA helicases plays important roles in DNA replication and the DNA damage response. There are five human RecQ helicases, amongst which mutations in BLM, WRN, and RECQ4 have been linked to human diseases displaying symptoms of accelerated aging to various degrees. Recent studies have provided new insights into the mechanisms that control early stages of the DNA damage response, and shed light on common roles of the RecQ helicases in DNA replication and the DNA damage response. Here, we review the evidence for defective DNA damage response being a feature linking mutations in RecQ helicases to premature aging diseases. Data are accumulating to suggest that RecQ helicases impart signaling and repair functions in the response to DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ababou, M., Dumaire, V., Lecluse, Y., and mor-Gueret, M. (2002). Bloom’s syndrome protein response to ultraviolet-C radiation and hydroxyurea-mediated DNA synthesis inhibition. Oncogene 21, 2079–2088.

    Article  PubMed  CAS  Google Scholar 

  2. Adams, M.D., McVey, M., and Sekelsky, J.J. (2003). Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299, 265–267.

    Article  PubMed  CAS  Google Scholar 

  3. Bachrati, C.Z. and Hickson, I.D. (2008). RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117, 219–233.

    Article  PubMed  CAS  Google Scholar 

  4. Bakkenist, C.J. and Kastan, M.B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506.

    Article  PubMed  CAS  Google Scholar 

  5. Beall, E.L. and Rio, D.C. (1996). Drosophila IRBP/Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev. 10, 921–933.

    Article  PubMed  CAS  Google Scholar 

  6. Berkovich, E., Monnat, R.J., Jr., and Kastan, M.B. (2007). Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat. Cell Biol. 9, 683–690.

    Article  PubMed  CAS  Google Scholar 

  7. Bohr, V.A., Souza, P.N., Nyaga, S.G., Dianov, G., Kraemer, K., Seidman, M.M., and Brosh, R.M., Jr. (2001). DNA repair and mutagenesis in Werner syndrome. Environ. Mol. Mutagen. 38, 227–234.

    Article  PubMed  CAS  Google Scholar 

  8. Botuyan, MV., Lee, J., Ward, IM., Kim, JE., Thompson, JR., Chen, J., and Mer, G. (2006). Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, E.J. and Baltimore, D. (2000). ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402.

    PubMed  CAS  Google Scholar 

  10. Bugreev, D.V., Brosh, R.M., Jr., and Mazin, A.V. (2008). RECQ1 possesses DNA branch migration activity. J. Biol. Chem. 283, 20231–20242.

    Article  PubMed  CAS  Google Scholar 

  11. Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522.

    Article  PubMed  CAS  Google Scholar 

  12. Chang, S., Multani, A.S., Cabrera, N.G., Naylor, M.L., Laud, P., Lombard, D., Pathak, S., Guarente, L., and DePinho, R.A. (2004). Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36, 877–882.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, C.C., Carson, J.J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., and Tyler, J.K. (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231–243.

    Article  PubMed  CAS  Google Scholar 

  14. Cheng, W.H., Muftic, D., Muftuoglu, M., Dawut, L., Morris, C., Helleday, T., Shiloh, Y., and Bohr, V.A. (2008). WRN is required for ATM activation and the S-phase checkpoint in response to interstrand crosslink-induced DNA double strand breaks. Mol. Biol. Cell 19, 3923–3933.

    Google Scholar 

  15. Cheng, W.H., Sakamoto, S., Fox, J.T., Komatsu, K., Carney, J., and Bohr, V.A. (2005). Werner syndrome protein associates with gamma H2AX in a manner that depends upon Nbs1. FEBS Lett. 579, 1350–1356.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng, W.H., von Kobbe, K.C., Opresko, P.L., Arthur, L.M., Komatsu, K., Seidman, M.M., Carney, J.P., and Bohr, V.A. (2004). Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J. Biol. Chem. 279, 21169–21176.

    Article  PubMed  CAS  Google Scholar 

  17. Chester, N., Babbe, H., Pinkas, J., Manning, C., and Leder, P. (2006). Mutation of the murine Bloom’s syndrome gene produces global genome destabilization. Mol. Cell Biol. 26, 6713–6726.

    Article  PubMed  CAS  Google Scholar 

  18. Chester, N., Kuo, F., Kozak, C., O’Hara, C.D., and Leder, P. (1998). Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom’s syndrome gene. Genes Dev. 12, 3382–3393.

    Article  PubMed  CAS  Google Scholar 

  19. Choudhary, S., Doherty, K.M., Handy, C.J., Sayer, J.M., Yagi, H., Jerina, D.M., and Brosh, R.M., Jr. (2006). Inhibition of Werner syndrome helicase activity by benzo[a]pyrene diol epoxide adducts can be overcome by replication protein A. J. Biol. Chem. 281, 6000–6009.

    Article  PubMed  CAS  Google Scholar 

  20. Chun, H.H. and Gatti, R.A. (2004). Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 3, 1187–1196.

    Article  CAS  Google Scholar 

  21. Cimprich, K.A. and Cortez, D. (2008). ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627.

    Article  PubMed  CAS  Google Scholar 

  22. Compton, S.A., Tolun, G., Kamath-Loeb, A.S., Loeb, L.A., and Griffith, J.D. (2008). The Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer. J. Biol. Chem. 283, 24478–24483.

    Article  PubMed  CAS  Google Scholar 

  23. Constantinou, A., Tarsounas, M., Karow, J.K., Brosh, R.M., Bohr, V.A., Hickson, I.D., and West, S.C. (2000). Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1, 80–84.

    Article  PubMed  CAS  Google Scholar 

  24. Crabbe, L., Jauch, A., Naeger, C.M., Holtgreve-Grez, H., and Karlseder, J. (2007). Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc. Natl. Acad. Sci. U.S.A. 104, 2205–2210.

    Article  PubMed  CAS  Google Scholar 

  25. Crabbe, L., Verdun, R.E., Haggblom, C.I., and Karlseder, J. (2004). Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306, 1951–1953.

    Article  PubMed  CAS  Google Scholar 

  26. Cuadrado, M., Martinez-Pastor, B., Murga, M., Toledo, L.I., Gutierrez-Martinez,P., Lopez, E., and Fernandez-Capetillo, O. (2006). ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J. Exp. Med. 203, 297–303.

    Article  PubMed  CAS  Google Scholar 

  27. D’Amours, D. and Jackson, S.P. (2002). The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3, 317–327.

    Article  PubMed  CAS  Google Scholar 

  28. Davies, S.L., North, P.S., and Hickson, I.D. (2007). Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat. Struct. Mol. Biol. 14, 677–679.

    Article  PubMed  CAS  Google Scholar 

  29. d’Adda di Fagagna, F., Teo, S.H., and Jackson, S.P. (2004). Functional links between telomeres and proteins of the DNA-damage response. Genes Dev. 18, 1781–1799.

    Article  PubMed  Google Scholar 

  30. De Klein, A., Muijtjens, M., van Os, R., Verhoeven, Y., Smit, B., Carr, A.M., Lehmann, A.R., and Hoeijmakers, J.H. (2000). Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482.

    Article  PubMed  Google Scholar 

  31. Du, X., Shen, J., Kugan, N., Furth, E.E., Lombard, D.B., Cheung, C., Pak, S., Luo, G., Pignolo, R.J., DePinho, R.A., Guarente, L., and Johnson, F.B. (2004). Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol. Cell Biol. 24, 8437–8446.

    Article  PubMed  CAS  Google Scholar 

  32. Falck, J., Coates, J., and Jackson, S.P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611.

    Article  PubMed  CAS  Google Scholar 

  33. Fan, W. and Luo, J. (2008). RecQ4 facilitates UV-induced DNA damage repair through interaction with nucleotide excision repair factor XPA. J. Biol. Chem 283, 29037–29044.

    Google Scholar 

  34. Frei, C. and Gasser, S.M. (2000). The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14, 81–96.

    PubMed  CAS  Google Scholar 

  35. Froget, B., Blaisonneau, J., Lambert, S., and Baldacci, G. (2008). Cleavage of stalled forks by fission yeast mus81/eme1 in absence of DNA replication checkpoint. Mol. Biol. Cell 19, 445–456.

    Article  PubMed  CAS  Google Scholar 

  36. Gaymes, T.J., North, P.S., Brady, N., Hickson, I.D., Mufti, G.J., and Rassool, F.V. (2002). Increased error-prone non homologous DNA end-joining – a proposed mechanism of chromosomal instability in Bloom’s syndrome. Oncogene 21, 2525–2533.

    Article  PubMed  CAS  Google Scholar 

  37. Gilson, E. and Geli, V. (2007). How telomeres are replicated. Nat. Rev. Mol. Cell Biol. 8, 825–838.

    Article  PubMed  CAS  Google Scholar 

  38. Goldberg, M., Stucki, M., Falck, J., D’Amours, D., Rahman, D., Pappin, D., Bartek, J., and Jackson, S.P. (2003). MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421, 952–956.

    Article  PubMed  CAS  Google Scholar 

  39. Goodarzi, A.A., Noon, A.T., Deckbar, D., Ziv, Y., Shiloh, Y., Lobrich, M., and Jeggo, P.A. (2008). ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177.

    Article  PubMed  CAS  Google Scholar 

  40. Grabowski, M.M., Svrzikapa, N., and Tissenbaum, H.A. (2005). Bloom syndrome ortholog HIM-6 maintains genomic stability in C. elegans. Mech. Ageing Dev. 126, 1314–1321.

    Article  PubMed  CAS  Google Scholar 

  41. Gray, M.D., Shen, J.C., Kamath-Loeb, A.S., Blank, A., Sopher, B.L., Martin, G.M., Oshima, J., and Loeb, L.A. (1997). The Werner syndrome protein is a DNA helicase. Nat. Genet. 17, 100–103.

    Article  PubMed  CAS  Google Scholar 

  42. Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636.

    Article  PubMed  CAS  Google Scholar 

  43. Hickson, I.D. (2003). RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3, 169–178.

    Article  PubMed  CAS  Google Scholar 

  44. Hishida, T., Han, Y.W., Shibata, T., Kubota, Y., Ishino, Y., Iwasaki, H., and Shinagawa, H. (2004). Role of the Escherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replication forks. Genes Dev. 18, 1886–1897.

    Article  PubMed  CAS  Google Scholar 

  45. Hoki, Y., Araki, R., Fujimori, A., Ohhata, T., Koseki, H., Fukumura, R., Nakamura, M., Takahashi, H., Noda, Y., Kito, S., and Abe, M. (2003). Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum. Mol. Genet. 12, 2293–2299.

    Article  PubMed  CAS  Google Scholar 

  46. Hu, Y., Lu, X., Barnes, E., Yan, M., Lou, H., and Luo, G. (2005). Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol. Cell Biol. 25, 3431–3442.

    Article  PubMed  CAS  Google Scholar 

  47. Hu, Y., Raynard, S., Sehorn, M.G., Lu, X., Bussen, W., Zheng, L., Stark, J.M., Barnes, E.L., Chi, P., Janscak, P., Jasin, M., Vogel, H., Sung, P., and Luo, G. (2007). RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 21, 3073–3084.

    Article  PubMed  CAS  Google Scholar 

  48. Huang, S., Li, B., Gray, M.D., Oshima, J., Mian, I.S., and Campisi, J. (1998). The premature ageing syndrome protein, WRN, is a 3′ ➔5′ exonuclease. Nat. Genet. 20, 114–116.

    Article  PubMed  CAS  Google Scholar 

  49. Huyen, Y., Zgheib, O., Ditullio, R.A., Jr., Gorgoulis, V.G., Zacharatos, P., Petty, T.J., Sheston, E.A., Mellert, H.S., Stavridi, E.S., and Halazonetis, T.D. (2004). Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411.

    Article  PubMed  CAS  Google Scholar 

  50. Hyun, M., Bohr, V.A., and Ahn, B. (2008). Biochemical characterization of the WRN-1 RecQ helicase of Caenorhabditis elegans. Biochemistry 47, 7583–7593.

    Article  PubMed  CAS  Google Scholar 

  51. Jacobs, J.J. and de, L.T. (2004). Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr. Biol. 14, 2302–2308.

    Article  PubMed  CAS  Google Scholar 

  52. Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G.C., Lukas, J., and Jackson, S.P. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45.

    Article  PubMed  CAS  Google Scholar 

  53. Jeong, Y.S., Kang, Y., Lim, K.H., Lee, M.H., Lee, J., and Koo, H.S. (2003). Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2, 1309–1319.

    Article  CAS  Google Scholar 

  54. Kanagaraj, R., Saydam, N., Garcia, P.L., Zheng, L., and Janscak, P. (2006). Human RECQ5beta helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res. 34, 5217–5231.

    Article  PubMed  CAS  Google Scholar 

  55. Karmakar, P., Seki, M., Kanamori, M., Hashiguchi, K., Ohtsuki, M., Murata, E., Inoue, E., Tada, S., Lan, L., Yasui, A., and Enomoto, T. (2006). BLM is an early responder to DNA double-strand breaks. Biochem. Biophys. Res. Commun. 348, 62–69.

    Article  PubMed  CAS  Google Scholar 

  56. Keogh, M.C., Kim, J.A., Downey, M., Fillingham, J., Chowdhury, D., Harrison, J.C., Onishi, M., Datta, N., Galicia, S., Emili, A., Lieberman, J., Shen, X., Buratowski, S., Haber, J.E., Durocher, D., Greenblatt, J.F., and Krogan, N.J. (2006). A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439, 497–501.

    Article  PubMed  CAS  Google Scholar 

  57. Kitao, S., Shimamoto, A., Goto, M., Miller, R.W., Smithson, W.A., Lindor, N.M., and Furuichi, Y. (1999). Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome.Nat. Genet. 22, 82–84.

    Article  PubMed  CAS  Google Scholar 

  58. Kozlov, S.V., Graham, M.E., Peng, C., Chen, P., Robinson, P.J., and Lavin, M.F. (2006). Involvement of novel autophosphorylation sites in ATM activation. EMBO J. 25, 3504–3514.

    Article  PubMed  CAS  Google Scholar 

  59. Kubota, Y., Takase, Y., Komori, Y., Hashimoto, Y., Arata, T., Kamimura, Y., Araki, H., and Takisawa, H. (2003). A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 17, 1141–1152.

    Article  PubMed  CAS  Google Scholar 

  60. Kyng, K.J., May, A., Kolvraa, S., and Bohr, V.A. (2003). Gene expression profiling in Werner syndrome closely resembles that of normal aging. Proc. Natl. Acad. Sci. U.S.A. 100, 12259–12264.

    Article  PubMed  CAS  Google Scholar 

  61. Lan, L., Nakajima, S., Komatsu, K., Nussenzweig, A., Shimamoto, A., Oshima, J., and Yasui, A. (2005). Accumulation of Werner protein at DNA double-strand breaks in human cells. J. Cell Sci. 118, 4153–4162.

    Article  PubMed  CAS  Google Scholar 

  62. Laud, P.R., Multani, A.S., Bailey, S.M., Wu, L., Ma, J., Kingsley, C., Lebel, M., Pathak, S., DePinho, R.A., and Chang, S. (2005). Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev. 19, 2560–2570.

    Article  PubMed  CAS  Google Scholar 

  63. Lee, J.H. and Paull, T.T. (2007). Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741–7748.

    Article  PubMed  CAS  Google Scholar 

  64. Lee, J.H. and Paull, T.T. (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554.

    Article  PubMed  CAS  Google Scholar 

  65. Lee, S.J., Yook, J.S., Han, S.M., and Koo, H.S. (2004). A Werner syndrome protein homolog affects C. elegans development, growth rate, life span and sensitivity to DNA damage by acting at a DNA damage checkpoint. Development 131, 2565–2575.

    Article  PubMed  CAS  Google Scholar 

  66. LeRoy, G., Carroll, R., Kyin, S., Seki, M., and Cole, M.D. (2005). Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines. Nucleic Acids Res. 33, 6251–6257.

    Article  PubMed  CAS  Google Scholar 

  67. Liberi, G., Maffioletti, G., Lucca, C., Chiolo, I., Baryshnikova, A., Cotta-Ramusino, C., Lopes, M., Pellicioli, A., Haber, J.E., and Foiani, M. (2005). Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 19, 339–350.

    Article  PubMed  CAS  Google Scholar 

  68. Lou, Z., Minter-Dykhouse, K., Franco, S., Gostissa, M., Rivera, M.A., Celeste, A., Manis, J.P., van, D.J., Nussenzweig, A., Paull, T.T., Alt, F.W., and Chen, J. (2006). MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 21, 187–200.

    Article  PubMed  CAS  Google Scholar 

  69. Machwe, A., Xiao, L., Groden, J., and Orren, D.K. (2006). The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45, 13939–13946.

    Article  PubMed  CAS  Google Scholar 

  70. Macris, M.A., Krejci, L., Bussen, W., Shimamoto, A., and Sung, P. (2006). Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Repair (Amst) 5, 172–180.

    Article  CAS  Google Scholar 

  71. Matsuno, K., Kumano, M., Kubota, Y., Hashimoto, Y., and Takisawa, H. (2006). The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol. Cell Biol. 26, 4843–4852.

    Article  PubMed  CAS  Google Scholar 

  72. McVey, M., Andersen, S.L., Broze, Y., and Sekelsky, J. (2007). Multiple functions of Drosophila BLM helicase in maintenance of genome stability. Genetics 176, 1979–1992.

    Article  PubMed  CAS  Google Scholar 

  73. McVey, M., Larocque, J.R., Adams, M.D., and Sekelsky, J.J. (2004). Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proc. Natl. Acad. Sci. U.S.A. 101, 15694–15699.

    Article  PubMed  CAS  Google Scholar 

  74. O’Driscoll, M. and Jeggo, P.A. (2006). The role of double-strand break repair – insights from human genetics. Nat. Rev. Genet. 7, 45–54.

    Article  PubMed  CAS  Google Scholar 

  75. Onclercq-Delic, R., Calsou, P., Delteil, C., Salles, B., Papadopoulo, D., and mor-Gueret, M. (2003). Possible anti-recombinogenic role of Bloom’s syndrome helicase in double-strand break processing. Nucleic Acids Res. 31, 6272–6282.

    Article  PubMed  CAS  Google Scholar 

  76. Ozsoy, A.Z., Ragonese, H.M., and Matson, S.W. (2003). Analysis of helicase activity and substrate specificity of Drosophila RECQ5. Nucleic Acids Res. 31, 1554–1564.

    Article  PubMed  CAS  Google Scholar 

  77. Petermann, E. and Caldecott, K.W. (2006). Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase. Cell Cycle 5, 2203–2209.

    Article  PubMed  CAS  Google Scholar 

  78. Petkovic, M., Dietschy, T., Freire, R., Jiao, R., and Stagljar, I. (2005). The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J. Cell Sci. 118, 4261–4269.

    Article  PubMed  CAS  Google Scholar 

  79. Pichierri, P., Franchitto, A., and Rosselli, F. (2004). BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO J. 23, 3154–3163.

    Article  PubMed  CAS  Google Scholar 

  80. Pirzio, L.M., Pichierri, P., Bignami, M., and Franchitto, A. (2008). Werner syndrome helicase activity is essential in maintaining fragile site stability. J. Cell Biol. 180, 305–314.

    Article  PubMed  CAS  Google Scholar 

  81. Poot, M., Gollahon, K.A., Emond, M.J., Silber, J.R., and Rabinovitch, P.S. (2002). Werner syndrome diploid fibroblasts are sensitive to 4-nitroquinoline-N-oxide and 8-methoxypsoralen: implications for the disease phenotype. FASEB J. 16, 757–758.

    PubMed  CAS  Google Scholar 

  82. Poot, M., Hoehn, H., Runger, T.M., and Martin, G.M. (1992). Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp. Cell Res. 202, 267–273.

    Article  PubMed  CAS  Google Scholar 

  83. Poot, M., Yom, J.S., Whang, S.H., Kato, J.T., Gollahon, K.A., and Rabinovitch, P.S. (2001). Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J. 15, 1224–1226.

    PubMed  CAS  Google Scholar 

  84. Ralf, C., Hickson, I.D., and Wu, L. (2006). The Bloom’s syndrome helicase can promote the regression of a model replication fork. J. Biol. Chem. 281, 22839–22846.

    Article  PubMed  CAS  Google Scholar 

  85. Rothfuss, A. and Grompe, M. (2004). Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol. Cell Biol. 24, 123–134.

    Article  PubMed  CAS  Google Scholar 

  86. Rouse, J. and Jackson, S.P. (2002). Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551.

    Article  PubMed  CAS  Google Scholar 

  87. Ruzankina, Y., Pinzon-Guzman, C., Asare, A., Ong, T., Pontano, L., Cotsarelis, G., Zediak, V.P., Velez, M., Bhandoola, A., and Brown, E.J. (2007). Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126.

    Article  PubMed  CAS  Google Scholar 

  88. Saintigny, Y., Makienko, K., Swanson, C., Emond, M.J., and Monnat, R.J., Jr. (2002). Homologous recombination resolution defect in werner syndrome. Mol. Cell Biol. 22, 6971–6978.

    Article  PubMed  CAS  Google Scholar 

  89. Sangrithi, M.N., Bernal, J.A., Madine, M., Philpott, A., Lee, J., Dunphy, W.G., and Venkitaraman, A.R. (2005). Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121, 887–898.

    Article  PubMed  CAS  Google Scholar 

  90. Saunders, R.D., Boubriak, I., Clancy, D.J., and Cox, L.S. (2008). Identification and characterization of a Drosophila ortholog of WRN exonuclease that is required to maintain genome integrity. Aging Cell 7, 418–425.

    Article  PubMed  CAS  Google Scholar 

  91. Schultz, L.B., Chehab, N.H., Malikzay, A., and Halazonetis, T.D. (2000). p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151, 1381–1390.

    Article  PubMed  CAS  Google Scholar 

  92. Sekelsky, J.J., Brodsky, M.H., Rubin, G.M., and Hawley, R.S. (1999). Drosophila and human RecQ5 exist in different isoforms generated by alternative splicing. Nucleic Acids Res. 27, 3762–3769.

    Article  PubMed  CAS  Google Scholar 

  93. Sengupta, S., Robles, A.I., Linke, S.P., Sinogeeva, N.I., Zhang, R., Pedeux, R., Ward, I.M., Celeste, A., Nussenzweig, A., Chen, J., Halazonetis, T.D., and Harris, C.C. (2004). Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest. J. Cell Biol. 166, 801–813.

    Article  PubMed  CAS  Google Scholar 

  94. Sharma, S. and Brosh, R.M., Jr. (2007). Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLoS. ONE. 2, e1297.

    Article  PubMed  CAS  Google Scholar 

  95. Sharma, S. and Brosh, R.M., Jr. (2008). Unique and important consequences of RECQ1 deficiency in mammalian cells. Cell Cycle 7, 989–1000.

    Article  PubMed  CAS  Google Scholar 

  96. Shiloh, Y. (2006). The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci. 31, 402–410.

    Article  PubMed  CAS  Google Scholar 

  97. Shimura, T., Torres, M.J., Martin, M.M., Rao, V.A., Pommier, Y., Katsura, M., Miyagawa, K., and Aladjem, M.I. (2008). Bloom’s syndrome helicase and Mus81 are required to induce transient double-strand DNA breaks in response to DNA replication stress. J. Mol. Biol. 375, 1152–1164.

    Article  PubMed  CAS  Google Scholar 

  98. Sidorova, J.M., Li, N., Folch, A., and Monnat, R.J., Jr. (2008). The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7, 796–807.

    Article  PubMed  CAS  Google Scholar 

  99. So, S., Adachi, N., Lieber, M.R., and Koyama, H. (2004). Genetic interactions between BLM and DNA ligase IV in human cells. J. Biol. Chem. 279, 55433–55442.

    Article  PubMed  CAS  Google Scholar 

  100. Stewart, E., Chapman, C.R., Al-Khodairy, F., Carr, A.M., and Enoch, T. (1997). rqh1+, a fission yeast gene related to the Bloom’s and Werner’s syndrome genes, is required for reversible S phase arrest. EMBO J. 16, 2682–2692.

    Article  PubMed  CAS  Google Scholar 

  101. Stiff, T., Reis, C., Alderton, G.K., Woodbine, L., O’Driscoll, M., and Jeggo, P.A. (2005). Nbs1 is required for ATR-dependent phosphorylation events. EMBO J. 24, 199–208.

    Article  PubMed  CAS  Google Scholar 

  102. Stiff, T., Walker, S.A., Cerosaletti, K., Goodarzi, A.A., Petermann, E., Concannon, P., O’Driscoll, M., and Jeggo, P.A. (2006). ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 25, 5775–5782.

    Article  PubMed  CAS  Google Scholar 

  103. Stucki, M., Clapperton, J.A., Mohammad, D., Yaffe, M.B., Smerdon, S.J., and Jackson, S.P. (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213–1226.

    Article  PubMed  CAS  Google Scholar 

  104. Sun, Y., Jiang, X., Chen, S., Fernandes, N., and Price, B.D. (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. U.S.A. 102, 13182–13287.

    Article  PubMed  CAS  Google Scholar 

  105. Takeuchi, F., Hanaoka, F., Goto, M., Akaoka, I., ori, T., Yamada, M., and Miyamoto, T. (1982). Altered frequency of initiation sites of DNA replication in Werner’s syndrome cells. Hum. Genet. 60, 365–368.

    Article  PubMed  CAS  Google Scholar 

  106. Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., and Shiloh, Y. (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621.

    Article  PubMed  CAS  Google Scholar 

  107. Verdun, R.E., Crabbe, L., Haggblom, C., and Karlseder, J. (2005). Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol. Cell 20, 551–561.

    Article  PubMed  CAS  Google Scholar 

  108. Verdun, R.E. and Karlseder, J. (2007). Replication and protection of telomeres. Nature 447, 924–931.

    Article  PubMed  CAS  Google Scholar 

  109. von Kobbe, K.C., Thoma, N.H., Czyzewski, B.K., Pavletich, N.P., and Bohr, V.A. (2003). Werner syndrome protein contains three structure-specific DNA binding domains. J. Biol. Chem. 278, 52997–53006.

    Article  CAS  Google Scholar 

  110. Wicky, C., Alpi, A., Passannante, M., Rose, A., Gartner, A., and Muller, F. (2004). Multiple genetic pathways involving the Caenorhabditis elegans Bloom’s syndrome genes him-6, rad-51, and top-3 are needed to maintain genome stability in the germ line. Mol. Cell Biol. 24, 5016–5027.

    Article  PubMed  CAS  Google Scholar 

  111. Wright, W.E. and Shay, J.W. (1992). The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27, 383–389.

    Article  PubMed  CAS  Google Scholar 

  112. Wu, L. and Hickson, I.D. (2003). The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874.

    Article  PubMed  CAS  Google Scholar 

  113. Wyllie, F.S., Jones, C.J., Skinner, J.W., Haughton, M.F., Wallis, C., Wynford-Thomas, D., Faragher, R.G., and Kipling, D. (2000). Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat. Genet. 24, 16–17.

    Article  PubMed  CAS  Google Scholar 

  114. Yu, C.E., Oshima, J., Fu, Y.H., Wijsman, E.M., Hisama, F., Alisch, R., Matthews, S., Nakura, J., Miki, T., Ouais, S., Martin, G.M., Mulligan, J., and Schellenberg, G.D. (1996). Positional cloning of the Werner’s syndrome gene. Science 272, 258–262.

    Article  PubMed  CAS  Google Scholar 

  115. Ziv, Y., Bielopolski, D., Galanty, Y., Lukas, C., Taya, Y., Schultz, D.C., Lukas, J., Bekker-Jensen, S., Bartek, J., and Shiloh, Y. (2006). Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 8, 870–876.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Intramural Research Program of the NIH, National Institute on Aging, and also by a Korean Research Foundation Grant of the Korean Government (MOEHRD) (KRF-2007-412-J00303, KRF-2007-521-C00211) to B. Ahn.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Hsing Cheng , Byungchan Ahn or Vilhelm A. Bohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cheng, WH., Ahn, B., Bohr, V.A. (2009). Linking Human RecQ Helicases to DNA Damage Response and Aging. In: Khanna, K., Shiloh, Y. (eds) The DNA Damage Response: Implications on Cancer Formation and Treatment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2561-6_15

Download citation

Publish with us

Policies and ethics