Skip to main content

An Overview of Strategic Ozone Sounding Networks: Insights into Ozone Budgets, UT/LS Processes and Tropical Climate Signatures

  • Conference paper
  • 1323 Accesses

Ozone soundings serve to integrate models, aircraft and ground-based measurements for better interpretation of atmospheric losses (stratosphere) and pollution (troposphere). A well-designed network of ozonesonde stations answers questions that cannot be solved by short campaigns or current satellite technology. The Match campaign (Rex et al. 1998) was designed specifically to follow ozone depletion within the polar vortex; the standard sites are at middle to high northern hemisphere latitudes. Short-term strategic networks operated over North America in July—August 2004 within the ICARTT/INTEX-A/NEAQS (International Consortium on Atmospheric Research on Transport and Transformation/Intercontinental Chemical Transport Experiment/New England Air Quality Study) and during the 2006 INTEX-B (INTEX Ozonesonde Network Study (http://croc.gsfc.nasa.gov/ intexb/ions06.html) and TEXAQS/GOMACCS (Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study). A global network designed to address questions about ozone in the equatorial zone, SHADOZ (Southern Hemisphere Additional Ozonesondes; http://croc.gsfc.nasa.gov/shadoz), has operated since 1998 in partnership with NOAA, NASA and the Meteorological Services of host countries (Thompson et al. 2003a, b). Examples of findings from these networks are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Collette, A., & Ancellet, G. (2005). Impact of vertical transport processes on the tropospheric ozone layering above Europe. Part II: Climatological analysis of the past 30 years. Atmospheric Environment, 39, 5423–5435.

    Article  CAS  Google Scholar 

  • Cooper, O. R. et al. (2006). Large upper tropospheric ozone enhancements above mid-latitude North America during summer: In situ evidence from the IONS and MOZAIC ozone monitoring network. Journal of Geophysical Research, 111, D24S05, doi: 10.1029/2006JD007306.

    Google Scholar 

  • Cooper, O. R. et al. (2007). Evidence for a recurring eastern North American upper tropo-spheric ozone maximum during summer. Journal of Geophysical Research, 112, D23304, doi: 10.1029/2007JD008710.

    Google Scholar 

  • Folkins, I., Oltmans, S. J., & Thompson, A. M. (2000). Tropical convective outflow and near-surface equivalent potential temperatures. Geophysical Research Letters, 27, 2549–2552.

    Article  Google Scholar 

  • Folkins, I., et al. (2002). Tropical ozone as in indicator of deep convective outflow, Journal of Geophysical Research, 107, D13, doi: 10.1029/2001JD001178.

    Google Scholar 

  • Folkins, I., Bernath, P., Boone, C., Walker, K., Thompson, A. M., & Witte, J. C. (2006). The seasonal cycles of O3, CO and convective outflow at the tropical tropopause. Geophysical Research Letters, 33, L16802, doi: 10.1029/2006GL026602.

    Google Scholar 

  • Harris, N. R. P., Rex, M., Goutail, F., Knudsen, B. M., Manney, G. L., Müller, R., et al. (2002). Comparison of empirically derived ozone losses in the Arctic vortex. Journal of Geophysical Research, 107, (D20), doi: 10.1029/2001JD000482.

    Google Scholar 

  • Jiang, Y. et al. (2007). Validation of aura microwave limb sounder ozone by ozonesonde and lidar measurements. Journal of Geophysical Research, 112, D24S34, doi: 10.1029/2007JD008776.

    Google Scholar 

  • Kim, J. H., Hudson, R. D., & Thompson, A. M. (1996). A new method of deriving time-averaged tropospheric column ozone over the tropics using TOMS radiances: Intercomparison and analysis. Journal of Geophysical Research, 101, 24317–24330, 1996.

    Article  CAS  Google Scholar 

  • Logan, J. A., et al. (2003). The quasi-biennial oscillation in equatorial ozone as revealed by ozonesonde and satellite data. Journal Geophysical Research, 108, doi: 10.129/2002JD002170.

    Google Scholar 

  • Logan, J. A., Megretskaia, I., Nassar, R., Murray, L. T., Zhang, L., Bowman, K. W., et al. (2008). Effects of the 2006 El Nino on tropospheric composition as revealed by data from the Tropospheric Emission Spectrometer (TES). Geophysical Research Letters, 35, L03816, doi: 10.1029/2007GL031698.

    Google Scholar 

  • Loucks, A. L. (2007). Evaluation of dynamical sources of ozone laminae in the tropical troposphere and tropical tropopause layer, MS Thesis, Penn State University.

    Google Scholar 

  • Oltmans, S. J. et al. (2001). Ozone in the Pacific tropical troposphere from ozonesonde observations. Journal Geophysical Research, 106, 32503–32526.

    Article  CAS  Google Scholar 

  • Osterman, G. B., et al. (2008). Validation of Tropospheric Emission Spectrometer (TES) measurements of the total, stratospheric and tropospheric column abundance of ozone. Journal Geophysical Research, 113, D15S16, doi: 10.1029/2007JD008801.

    Google Scholar 

  • Parrish, D. D., et al. (2008). Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico and the Atmospheric Composition and Climate Study (GoMACCS), submitted. Journal of Geophysical Research, 92, 6627–6634.

    Google Scholar 

  • Pierce, R. B., & Grant, W. B. (1998). Seasonal evolution of Rossby and gravity wave induced laminae in ozonesonde data obtained from Wallops Island, Virginia. Geophysical Research Letters, 25, 1859–1862.

    Article  CAS  Google Scholar 

  • Randel, W. J., Park, M., Wu, F., & Livesey, N. (2007). A large annual cycle in ozone above the tropical tropopause linked to the Brewer-Dobson circulation. Journal Atmospheric Science, 64, 4479–4488.

    Article  Google Scholar 

  • Rex, M., et al. (1998). In situ measurements of stratospheric ozone depletion rates in the Arctic winter 1991/1992: A Lagrangian approach. Journal Geophysical Research, 103, 5843–5853.

    Article  CAS  Google Scholar 

  • Rex, M., Lehmann, R., Wohlmann, I., Kremser, S., Krueger, K., Dameris, M., et al. (2007). Ascent rates, dehydration and vertical diffusion in the tropical tropopause region and lower stratosphere. RIIS Proceedings.

    Google Scholar 

  • Sauvage, B., Thouret, V., Thompson, A. M., Witte, J. C., Cammas, J. P., Nédelec, P., et al. & MOZAIC and SHADOZ Teams (2006). Enhanced view of the tropical Atlantic ozone paradox and zonal wave-one from the in-situ MOZAIC and SHADOZ data. Journal of Geophysical Research, 111, D01301, doi: 10.1029/2005JD006241.

    Google Scholar 

  • Schoeberl, M. R., et al. (2007). A trajectory based estimate of the tropospheric column ozone column using the residual method. Journal of Geophysical Research, 112, D24S49, doi: 10.1029/ 2007JD008873.

    Google Scholar 

  • Shelow, D. M., Lee, S., Thompson, A. M., Miller, S. K., Loucks, A. L., & Witte, J. C. (2007). EOF analysis of temperature anomalies in the tropics with radiosonde data from the SHADOZ program, Presentation to 14th Middle Atmosphere Conference, American Meteorological Society, Portland, OR, August 2007.

    Google Scholar 

  • Shiotani, M. (1992). Annual, quasi-biennial and El Nino-Southern Oscillation (ENSO) time-scale variations in Equatorial total ozone. Journal of Geophysical Research, 97, 7625–7634.

    CAS  Google Scholar 

  • Singh, H. B., Brune, W. H., Crawford, J. H., Jacob, D. J., & Russell, P. B. (2006). Overview of the summer 2004 International Chemical Transport Experiment - North America (INTEX-A). Journal of Geophysical Research, 111, D23S02, doi: 10.1029/2006JD007905.

    Google Scholar 

  • Smit, H. G. J., et al. (2007). Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Results from the Juelich Ozonesonde Intercomparison Experiment chamber (JOSIE). Journal of Geophysical Research, 112, D19306, doi: 10.1029/2006JD007308.

    Google Scholar 

  • Solomon, S., Thompson, D. W. J., Portmann, R. W., Oltmans, S. J., & Thompson, A. M. (2005). On the distribution and variability of ozone in the tropical upper troposphere: Implications for tropical deep convection and chemical-dynamical coupling. Geophysical Research Letters, 32, L23813, doi: 10.1029/2005GL024323.

    Google Scholar 

  • Stajner, I., et al. (2008). Assimilated ozone from EOS-Aura: evaluation of the tropopause region and tropospheric columns. Journal of Geophysical Research, 113, D16S32, doi: 10.1029/2007JD008863.

    Google Scholar 

  • Streibel, M., et al. (2005). Chemical ozone loss in the Arctic winter 2002/2003 determined with Match 1680–7375. Atmospheric Chemistry and Physics, 5, 4311–4333.

    Google Scholar 

  • Takashima, H., & Shiotani, M. (2007). Ozone variation in the tropical tropopause layer as seen from ozonesonde data. Journal of Geophysical Research, 112, D11123, doi: 10.1029/2006JD008322.

    Google Scholar 

  • Teitelbaum, H., Ovarlez, J., Kelder, H., & Lott, F. (1994). Some observations of gravity-wave-induced structure in ozone and water vapour during EASOE. Geophysical Research Letters, 21, 1483–1486.

    Article  CAS  Google Scholar 

  • Thompson, A. M., Doddridge, B. G., Witte, J. C., Hudson, R. D., Luke, W. T., Johnson, J. E., et al. (2000). A tropical Atlantic ozone paradox: Shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999. Geophysical Research Letters, 27, 3317–3320.

    Article  CAS  Google Scholar 

  • Thompson, A. M., et al. (2003a). Southern Hemisphere ADditional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology. 1. Comparison with TOMS and ground-based measurements. Journal of Geophysical Research, 108, 8238, doi: 10.1029/2001JD000967.

    Article  CAS  Google Scholar 

  • Thompson, A. M., et al. (2003b). Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology. 2. Tropospheric ozone variability and the zonal wave-one. Journal of Geophysical Research, 108, D2, 8241, doi: 10.129/2002JD002241.

    Google Scholar 

  • Thompson, A. M., et al. (2007a). Intercontinental transport experiment ozonesonde network study (IONS, 2004): 1. Summertime upper tropospheric/lower stratosphere ozone over northeastern North America. Journal of Geophysical Research, 112, D12S12, doi: 10.1029/2006JD007441.

    Google Scholar 

  • Thompson, A. M., et al. (2007b). Intercontinental transport experiment ozonesonde network study (IONS, 2004): 2. Tropospheric ozone budgets and variability over northeastern North America. Journal of Geophysical Research, doi: 10.1029/2006JD007670, 112, D12S13.

    Google Scholar 

  • Thompson, A. M., Witte, J. C., Smit, H. G. J., Oltmans, S. J., Johnson, B. J., Kirchhoff, V. W. J. H., et al. (2007c). Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology. 3. Instrumentation, station variability, evaluation with simulated flight profiles. Journal of Geophysical Research, 112, D03304, doi: 10.1029/2005JD007042.

    Google Scholar 

  • Thompson, A. M., Yorks, J. E., Miller, S. K., Witte, J. C., Dougherty, K. M., Morris, G. A., et al. (2008). Free tropsopheric ozone sources and wave activity during MILAGRO/Intercontinental Transport Experiment Ozone Network Study, 2006 (IONS-06). Atmospheric Chemistry and Physics, 8, 5113–5125.

    Article  CAS  Google Scholar 

  • Von der Gathen, P., et al. (1995). Observational evidence for chemical ozone depletion over the Arctic winter 1991–92. Nature, 375, 131–134.

    Article  Google Scholar 

  • World Meteorological Organization. (2007). WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project — Report No. 50, 572 pp., Geneva, 2007.

    Google Scholar 

  • Zhang, L., et al. (2006). Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions. Geophysical Research Letters, 33, L18804, doi: 10.1029/2006GL026399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Thompson, A.M. (2009). An Overview of Strategic Ozone Sounding Networks: Insights into Ozone Budgets, UT/LS Processes and Tropical Climate Signatures. In: Zerefos, C., Contopoulos, G., Skalkeas, G. (eds) Twenty Years of Ozone Decline. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2469-5_17

Download citation

Publish with us

Policies and ethics