Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 15))

Abstract

We are living in a rapidly changing world. Human domination of the Earth alters the composition, structure and function of ecosystems, emphasising an urgent need to consider ecological principles on a global scale. Knowledge of these principles is necessary to understand ecosystem development and to manage ecosystem services crucial to human survival (Kremen & Ostfeld 2005; Mokany et al. 2006; Grimm et al. 2008).

Pollution, the introduction of contaminants into an environment that causes instability, disorder, harm or discomfort to the physical systems or living organisms, is just one of many actors behind global changes. Along with direct toxic impacts, pollution often triggers numerous secondary effects, such as modifications of the microclimate, leading to further disturbance of the contaminated environments. Disturbance-induced changes in ecosystems are of central concern in ecology, and a challenge for ecologists is to understand the factors that affect the resilience of community structures and ecosystem functions (Moretti et al. 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AMAP (2006) AMAP assessment 2006: acidifying pollutants, arctic haze, and acidification in the Arctic. Arctic Monitoring and Assesment Programme, Oslo

    Google Scholar 

  • Andrén H, Delin A, Seiler A (1997) Population response to landscape changes depends on specialization to different landscape elements. Oikos 80:193–196

    Article  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Barcan V (2002a) Leaching of nickel and copper from soil contaminated by metallurgical dust. Environ Int 28:63–68

    Article  PubMed  CAS  Google Scholar 

  • Barrett GW, Vandyne GM, Odum EP (1976) Stress ecology. BioScience 26:192–194

    Article  Google Scholar 

  • Birdsey RA (2003) Preface. In: Karnosky DF, Percy KE, Chappelka AH, Simpson C, Pikkarainen J (eds) Air pollution, global change and forests in the new millenium. Elsevier, Amsterdam, pp xxi–xxii

    Chapter  Google Scholar 

  • Boutron CF, Candelone JP, Hong SM (1995) Greenland snow and ice cores – unique archives of large scale pollution of the troposphere of the northern hemisphere by lead and other heavy metals. Sci Total Environ 161:233–241

    Article  Google Scholar 

  • Bradshaw AD, McNeilly T (1981) Evolution and pollution. Edward Arnold, London

    Google Scholar 

  • Brimblecombe P, Makra L (2005) Selections from the history of environmental pollution, with special attention to air pollution. Part 2: from medieval times to the 19th century. Int J Environ Pollut 23:351–367

    Article  CAS  Google Scholar 

  • Cairns J, Niederlehner BR (1996) Developing a field of landscape ecotoxicology. Ecol Appl 6:790–796

    Article  Google Scholar 

  • Calow P, Sibly RM, Forbes V (1997) Risk assessment on the basis of simplified life-history scenarios. Environ Toxicol Chem 16:1983–1989

    Article  CAS  Google Scholar 

  • Chapman PM (2002) Integrating toxicology and ecology: putting the “eco” into ecotoxicology. Marine Pollut Bull 44:7–15

    Article  CAS  Google Scholar 

  • Chernenkova TV (2002) Response of forest vegetation to industrial pollution. Nauka, Moscow (in Russian)

    Google Scholar 

  • Clements WH, Newman MC (2002) Community ecotoxicology. Wiley, New York

    Book  Google Scholar 

  • Conn VS, Rantz MJ (2003) Research methods: managing primary study quality in meta-analyses. Res Nurs Health 26:322–333

    Article  PubMed  Google Scholar 

  • Didham RK, Norton DA (2006) When are alternative stable states more likely to occur? A reply to T. Fukami and W. G. Lee. Oikos 113:357–362

    Article  Google Scholar 

  • Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE, Thomson D (1998) The statistical inevitability of stability-diversity relationships in community ecology. Am Nat 151:264–276

    Article  PubMed  CAS  Google Scholar 

  • Dodson SI, Allen TFH, Carpenter SR, Ives AR, Jeanne RL, Kitchell JF, Langston NE, Turner MG (1998) Ecology. Oxford University Press, New York

    Google Scholar 

  • Downs TJ, Ambrose RF (2001) Syntropic ecotoxicology: a heuristic model for understanding the vulnerability of ecological systems to stress. Ecosyst Health 7:266–283

    Article  Google Scholar 

  • Dudka S, Adriano DC (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26:590–602

    Article  CAS  Google Scholar 

  • Emberson L, Ashmore M, Murray F (eds) (2003) Air pollution impacts on crops and forests, a global assessment. Imperial College Press, London

    Google Scholar 

  • Filser J (2008) Ecotoxicology and ecosystems: relevance, restrictions, research needs. Basic Appl Ecol 9:333–336

    Article  Google Scholar 

  • Filser J, Koehler H, Ruf A, Rombke J, Prinzing A, Schaefer M (2008) Ecological theory meets soil ecotoxicology: challenge and chance. Basic Appl Ecol 9:346–355

    Article  CAS  Google Scholar 

  • Fitzgerald GF (1980) Canadian-American arbitration and creation of law – the contribution of the Trail smelter case to the development of international law, including the emerging law of trasboundary air pollution. Etudes Internationales 11:393–419

    PubMed  CAS  Google Scholar 

  • Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. In: Sheppard LJ, Cape JN (eds) Forest growth responses to the pollution climate of the 21st century. Kluwer, Dordrecht, pp 5–32

    Google Scholar 

  • Freedman B (1989) Environmental ecology. Academic Press, San Diego

    Google Scholar 

  • Freer-Smith PH (1997) Forest growth and decline: what is the role of air pollutants? In: Yunus M, Iqbal M (eds) Plant response to air pollution. Wiley, Chichester, pp 437–447

    Google Scholar 

  • Genoni GP (1997) Towards a conceptual synthesis in ecotoxicology. Oikos 80:96–106

    Article  Google Scholar 

  • Glass GV (2000) Meta-analysis at 25. http://glass.ed.asu.edu/gene/papers/meta25.html. Accessed 20 Jan 2009

  • Glasziou PP, Sanders SL (2002) Investigating causes of heterogeneity in systematic reviews. Stat Med 21:1503–1511

    Article  PubMed  CAS  Google Scholar 

  • Gordon AG, Gorham E (1963) Ecological aspects of air pollution from an iron-sintering plant at Wawa, Ontario. Can J Bot 41:1063–1078

    Article  CAS  Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers Ecol Environ 6:264–272

    Article  Google Scholar 

  • Grodziński W, Yorks TP (1981) Species and ecosystem level bioindicators of airborne pollution – an analysis of two major studies. Water Air Soil Pollut 16:33–53

    Article  Google Scholar 

  • Gunn JM (ed) (1995) Restoration and recovery of an industrial region – progress in restoring the smelter-damaged landscape near Sudbury, Canada. Springer, New York

    Google Scholar 

  • Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149

    Article  Google Scholar 

  • Haywood JK (1907) Injury to vegetation and animal life by smelter fumes. J Am Chem Soc 29:998–1009

    Article  CAS  Google Scholar 

  • Hoffman DJ, Rattner BA, Burton GAJ, Cairns JJ (1995) Handbook of ecotoxicology. Lewis, Boca Raton

    Google Scholar 

  • Holmstrup M, Petersen BF, Larsen MM (1998) Combined effects of copper, desiccation, and frost on the viability of earthworm cocoons. Environ Toxicol Chem 17:897–901

    Article  CAS  Google Scholar 

  • Hunt M (1997) How science takes stock. Russell Sage Foundation, New York

    Google Scholar 

  • Hunter MLJ, Gibbs JP (2007) Fundamentals of conservation biology. Blackwell, Cambridge/Oxford

    Google Scholar 

  • Innes JL, Haron AH (eds) (2000) Air pollution and the forests of developing and rapidly industrializing countries. CAB International, Wallingford

    Google Scholar 

  • Innes JL, Oleksyn J (eds) (2000) Forest dynamics in heavily polluted regions. CAB International, Wallingford

    Google Scholar 

  • Johansen P, Muir DCG, Law RJ (2000) Contaminants in the Greenland environment – foreword. Sci Total Environ 245:1–2

    Article  PubMed  CAS  Google Scholar 

  • Johnson AR (2002) Landscape ecotoxicology and assessment of risk at multiple scales. Human Ecol Risk Assess 8:127–146

    Article  Google Scholar 

  • Klumpp A, Domingos M, Pignata ML (1999) Air pollution and vegetation damage in South America – state of knowledge and perspectives. In: Agrawal SB, Agrawal M (eds). Environmental pollution and plant responses. Lewis, Boca Raton, pp 111–136

    Google Scholar 

  • Kozlov MV (2006) Severonikel smelter as the model for studies of the impact of industrial pollution on biota: analysis of the accumulated information. In: Evdokimova GA, Vandysh O (eds) Modern ecological problems of the North (To the centenary of the OI Semenov-Tyan-Shanskiy birthday). Proceedings of the international conference, 10–12 October 2006, part 1. Institute of the North Industrial Ecology Problems, Apatity, pp 231–233 (in Russian)

    Google Scholar 

  • Kozlov MV (2007) Improper sampling design and pseudoreplicated analysis: conclusions by Veličković. (2004) questioned. Hereditas 144:43–44

    Article  PubMed  Google Scholar 

  • Kozlov MV, Zvereva EL (2003) Impact of industrial polluters on terrestrial ecosystems: a research synthesis. In: Honkanen JO, Koponen PS (eds) Sixth Finnish conference of environmental sciences: Proceedings. Finnish Society for Environmental Sciences & University of Joensuu, Joensuu, pp 72–75

    Google Scholar 

  • Kozlov MV, Zvereva EL (2007a) Industrial barrens: extreme habitats created by non-ferrous metallurgy. Rev Environ Sci Biotechnol 6:231–259

    Article  CAS  Google Scholar 

  • Krebs CJ (2001) Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco

    Google Scholar 

  • Kremen C, Ostfeld RS (2005) A call to ecologists: measuring, analyzing, and managing ecosystem services. Frontiers Ecol Environ 3:540–548

    Article  Google Scholar 

  • Lee JA (1998) Unintentional experiments with terrestrial ecosystems: ecological effects of sulphur and nitrogen pollutants. J Ecol 86:1–12

    Article  CAS  Google Scholar 

  • Likens GE, Bormann FH (1974) Acid rain – serious regional environmental problem. Science 184:1171–1179

    Article  Google Scholar 

  • Linzon SN (1986) Effects of gaseous pollutants on forests in eastern North America. Water Air Soil Pollut 31:537–550

    Article  CAS  Google Scholar 

  • MacMillan D (2000) Smoke wars: Anaconda copper, Montana air pollution, and the cours, 1820–1924. Montana Historical Society Press, Helena

    Google Scholar 

  • Makra L, Brimblecombe P (2004) Selections from the history of environmental pollution, with special attention to air pollution. Part 1. Int J Environ Pollut 22:641–656

    Article  CAS  Google Scholar 

  • Markert B, Herpin U, Berlekamp J, Oehlmann J, Grodzinska K, Maňkovská B, Suchara I, Siewers U, Weckert V, Lieth H (1996) A comparison of heavy metal deposition in selected Eastern European countries using the moss monitoring method, with special emphasis on the ‘Black Triangle’. Sci Total Environ 193:85–100

    Article  CAS  Google Scholar 

  • Markow TA, Clarke GM (1997) Meta-analysis of the heritability of developmental stability: a giant step backward – comment. J Evol Biol 10:31–37

    Article  Google Scholar 

  • Matt GE (2003) Will it work in Münster? Meta-analysis and the empirical generalization of causal relationships. In: Schulze R, Holling H, Bohning D (eds) Meta-analysis: new developments and applications in medical and social sciences. Hogrefe & Huber, Cambridge, pp 113–139

    Google Scholar 

  • Matthews RA, Landis WG, Matthews GB (1996) The community conditioning hypothesis and its application to environmental toxicology. Environ Toxicol Chem 15:597–603

    Article  CAS  Google Scholar 

  • McDonnell MJ, Pickett STA (1990) Ecosystem structure and function along urban rural gradients – an unexploited opportunity for ecology. Ecology 71:1232–1237

    Article  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biol 12:84–96

    Article  Google Scholar 

  • Moretti M, Duelli P, Obrist MK (2006) Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149:312–327

    Article  PubMed  Google Scholar 

  • National Research Council of Canada (1939) Effect of sulphur dioxide on vegetation, prepared for the Associate Committee on Trail Smelter Smoke. (Publ. No. 815). National Research Council of Canada, Ottawa

    Google Scholar 

  • Newman EI (1993) Applied ecology. Blackwell, Oxford

    Google Scholar 

  • Newson M (1995) The Earth as output: pollution. In: Johnston RJ, Taylor PJ, Watts MJ (eds) Geographies of global change. Blackwell, Oxford/Cambridge, pp 333–353

    Google Scholar 

  • Nriagu JO, Wong HKT, Lawson G, Daniel P (1998) Saturation of ecosystems with toxic metals in Sudbury basin, Ontario, Canada. Sci Total Environ 223:99–117

    Article  PubMed  CAS  Google Scholar 

  • Odum EP (1969a) Fundamentals of ecology. Saunders, Philadelphia

    Google Scholar 

  • Odum EP (1969b) Strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Odum EP (1985) Trends expected in stressed ecosystems. BioScience 35:419–422

    Article  Google Scholar 

  • Odum EP, Finn JT, Franz EH (1979) Perturbation theory and the subsidy stress gradient. BioScience 29:349–352

    Article  Google Scholar 

  • Ormerod SJ, Pienkowski MW, Watkinson AR (1999) Communicating the value of ecology. J Appl Ecol 36:847–855

    Article  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Context-dependent changes in the resistance and resilience of soil microbes to an experimental disturbance for three primary plant chronosequences. Oikos 112:196–208

    Article  Google Scholar 

  • Padgett PE, Kee SN (2004) Impacts of air pollution on forest ecosystems. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Elsevier, Amsterdam, pp 132–139

    Chapter  Google Scholar 

  • Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biol 12:470–476

    Article  Google Scholar 

  • Rapport DJ, Regier HA, Hutchinson TC (1985) Ecosystem behavior under stress. Am Nat 125:617–640

    Article  Google Scholar 

  • Renner E (2002) The Black Triangle area – fit for Europe? Numerical air quality studies for the Black Triangle area. Ambio 31:231–235

    PubMed  Google Scholar 

  • Roitto M, Kozlov MV, Zvereva EL (2009) Impact of point polluters on growth and reproduction of vascular plants (submitted)

    Google Scholar 

  • Rusek J, Marshall VG (2000) Impacts of airborne pollutants on soil fauna. Ann Rev Ecol Syst 31:395–423

    Article  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Scheiner SM, Willig MR (2008) A general theory of ecology. Theor Ecol 1:21–28

    Article  Google Scholar 

  • Settele J, Hammen V, Hulme P, Karlson U, Klotz S, Kotarac M, Kunin W, Marion G, O’Connor M, Petanidou T, Peterson K, Potts S, Pritchard H, Pysek P, Rounsevell M, Spangenberg J, Steffan-Dewenter I, Sykes M, Vighi M, Zobel M, Kuhn I (2005) ALARM: Assessing LArge-scale environmental Risks for biodiversity with tested Methods. GAIA – Ecol Persp Sci Soc 14:69–72

    Google Scholar 

  • Shevchenko V, Lisitzin A, Vinogradova A, Stein R (2003) Heavy metals in aerosols over the seas of the Russian Arctic. Sci Total Environ 306:11–25

    Article  PubMed  CAS  Google Scholar 

  • Smith WH (1974) Air pollution – effects on the structure and function of the temperate forest ecosystem. Environ Pollut 6:111–129

    Article  CAS  Google Scholar 

  • Soulé ME (1991) Conservation – tactics for a constant crisis. Science 253:744–750

    Article  PubMed  Google Scholar 

  • Stern DI (2006) Reversal of the trend in global anthropogenic sulfur emissions. Global Environ Change – Human Policy Dimensions 16:207–220

    Article  Google Scholar 

  • Tarko AM, Bykadorov AV, Kryuchkov VV (1995) Modeling of air pollution impacts on forest ecosystems in region. Doklady Rossiiskoi Akademii Nauk [Russ Acad Sci Dokl, Moscow] 341:571–573 (in Russian)

    CAS  Google Scholar 

  • Tilman D (1999) Ecology – diversity and production in European grasslands. Science 286:1099–1100

    Article  CAS  Google Scholar 

  • Treshow M (1984) Air pollution and plant life. Wiley, Chichester

    Google Scholar 

  • Tyler G (1978) Leaching rates of heavy metal ions in forest soil. Water Air Soil Pollut 9:137–148

    Article  CAS  Google Scholar 

  • Vorobeichik EL (2002) Changes in the spatial structure of the destruction process under the conditions of atmospheric pollution of forest ecosystems. Biol Bull 29:300–310

    Article  CAS  Google Scholar 

  • Vorobeichik EL (2005) Pollution ecology in Institute of Plant and Anumal Ecology. In: Smirnov NG (ed) Ural ecological scientific school: milestones of establishment and development. Institute of Plant and Animal Ecology, Ekaterinburg, pp 175–217 (in Russian)

    Google Scholar 

  • Vorobeichik EL, Sadykov OF, Farafontov MG (1994) Ecological standardization of industrial pollution of terrestrial ecosystems (local scale). Nauka, Ekaterinburg (in Russian)

    Google Scholar 

  • Winterhalder K (2000) Landscape degradation by smelter emissions near Sudbury, Canada, and subsequent amelioration and restoration. In: Innes JL, Oleksyn J (eds) Forest dynamics in heavily polluted regions. CAB International, Wallingford, pp 87–119

    Google Scholar 

  • Wolff EW, Suttie ED, Peel DA (1999) Antarctic snow record of cadmium, copper, and zinc content during the twentieth century. Atmos Environ 33:1535–1541

    Article  CAS  Google Scholar 

  • Zverev VE (2009) Mortality and regeneration of mountain birch around the nickel-copper smelter following substantial emission decline: results of fifteen years of monitoring. Russ J Ecol 40 (in press)

    Google Scholar 

  • Zvereva EL, Kozlov MV (2000b) Pollution suppresses delayed inducible resistance in boreal willow Salix borealis. Ecol Lett 3:85–89

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2009) Responses of terrestrial arthropods to industrial pollution: a meta-analysis. Environ Sci Pollut Res (DOI 10.1007/s11356-009-0138-0)

    Google Scholar 

  • Zvereva EL, Toivonen E, Kozlov MV (2008) Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Global Ecol Biogeogr 17:305–319

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2001) Effects of pollution-induced habitat disturbance on the response of willows to simulated herbivory. J Ecol 89:21–30

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2004) Facilitative effects of top-canopy plants on four dwarf shrub species in habitats severely disturbed by pollution. J Ecol 92:288–296

    Article  CAS  Google Scholar 

  • Zvereva EL, Kozlov MV (2000c) Bud removal alleviates negative effects of pollution on quality of Salix borealis for insect herbivore. Basic Appl Ecol 1:171–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Kozlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Kozlov, M.V., Zvereva, E.L., Zverev, V.E. (2009). Introduction. In: Impacts of Point Polluters on Terrestrial Biota. Environmental Pollution, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2467-1_1

Download citation

Publish with us

Policies and ethics