Skip to main content

Unraveling a Complex Transmission Cycle: Implications for Control

  • Chapter
Book cover Vector Biology, Ecology and Control

Abstract

The ability of an arbovirus such as the West Nile virus to be transmitted depends on interactions among a large number of factors including host population structure and susceptibility, mosquito population structure, feeding patterns, and vectoral capacity and the genetic makeup of the virus. The interaction of these genetic components with environmental factors at any given time plays a significant role in viral transmission, as well as viral evolution and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakonyi T, Hubalek Z, Rudolf I, Nowotny N. 2005. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg. Infect. Dis. 11:225–231.

    CAS  PubMed  Google Scholar 

  • Bernard KA, Kramer LD. 2001. West Nile virus activity in the United States, 2001. Viral Immunol. 14:319–38.

    Article  CAS  PubMed  Google Scholar 

  • Bondre VP, Jadi RS, Mishra AC, Yergolkar PN, Arankalle VA. 2007. West Nile virus isolates from India: evidence for a distinct genetic lineage. J. Gen. Virol. 88:875–884.

    Article  CAS  PubMed  Google Scholar 

  • Brault AC, Huang CY, Langevin SA, Kinney RM, Bowen RA. 2007. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat. Genet. 39:1162–1166.

    Article  CAS  PubMed  Google Scholar 

  • Ciota AT, Lovelace AO, Ngo KA, Le AN, Maffei JG. 2007. Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology 357:165–174.

    Article  CAS  PubMed  Google Scholar 

  • Cupp EW, Hassan HK, Yue X, Oldland WK, Lilley BM, Unnasch TR. 2007. West Nile virus infection in mosquitoes in the mid-south USA, 2002–2005. J. Med. Entomol. 44:117–125.

    Article  CAS  PubMed  Google Scholar 

  • Davis CT, Ebel GD, Lanciotti RS, Brault AC, Guzman H. 2005. Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype. Virology 342:252–265.

    Article  CAS  PubMed  Google Scholar 

  • Douglas KO, Kilpatrick AM, Lavoie MC. 2007. A quantitative risk assessment of West Nile virus introduction into Barbados. West Indian Med. J. 56:394–7.

    CAS  PubMed  Google Scholar 

  • Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD. 2004. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am. J. Trop. Med. Hyg. 71:493–500.

    CAS  PubMed  Google Scholar 

  • Ebel GD, Rochlin I, Longacker J, Kramer LD. 2005. Culex restuans (Diptera: culicidae) relative abundance and vector competence for West Nile virus. J. Med. Entomol. 42:838–843.

    Article  PubMed  Google Scholar 

  • Edman JD, Taylor DJ. 1968. Culex nigripalpus: seasonal shift in the bird-mammal feeding ratio in a mosquito vector of human encephalitis. Science 161:67–68.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F. 2004. Emerging vectors in the Culex pipiens complex. Science 303:1535–1538.

    Article  CAS  PubMed  Google Scholar 

  • Hardy JL. 1988. Susceptibility and resistance of vector mosquitoes. In TP Monath (ed.) The Arboviruses: Epidemiology and Ecology, 1, CRC Press, Inc., Boca Raton, FL, 87–126.

    Google Scholar 

  • Hassan HK, Cupp EW, Hill GE, Katholi CR, Klingler K, Unnasch TR. 2003. Avian host preference by vectors of eastern equine encephalomyelitis virus. Am. J. Trop. Med. Hyg. 69:641–647.

    PubMed  Google Scholar 

  • Kilpatrick AM, Daszak P, Goodman SJ, Rogg H, Kramer LD, Cedeño V, Cunningham AA. 2006. Predicting pathogen introduction: West Nile virus spread to Galáipagos. Conserv Biol. 20:1224–31.

    Article  PubMed  Google Scholar 

  • Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD. 2006b. Host heterogeneity dominates West Nile virus transmission. Proc. Biol. Sci. 273:2327–2333.

    Article  PubMed  Google Scholar 

  • Kilpatrick AM, Gluzberg Y, Burgett J, Daszak P. 2004. A quantitative risk assessment of the pathways by which West Nile virus could reach Hawaii. EcoHealth 2:205–209.

    Article  Google Scholar 

  • Kilpatrick AM, Jones MJ, Marra PP, Kramer LD, Daszak P, Fonseca DM. 2007. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am. J. Trop. Med. Hyg. 77(4):667–671.

    PubMed  Google Scholar 

  • Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P. 2005. West Nile virus risk assessment and the bridge vector paradigm. Emerg. Infect. Dis. 11:425–429.

    PubMed  Google Scholar 

  • Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. 2006c. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4:e82.

    Article  PubMed  Google Scholar 

  • Kilpatrick AM, Meola MA, Moudy RM, Kramer LD. 2008. Temperature, viral genetics, and the transmission of West Nile virus by culex pipiens mosquitoes. PLoS Pathog. 4(6):e1000092.

    Article  PubMed  Google Scholar 

  • Komar N, Langevin S, Hinten S, Nemeth N, Edwards E. 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg. Infect. Dis. 9:311–322.

    PubMed  Google Scholar 

  • Kramer LD, Li J, Shi P-Y. 2007a. West Nile virus. Lancet Neurol. 6:171–181.

    Article  CAS  PubMed  Google Scholar 

  • Kramer LD, Styer LM, Ebel GD. 2007b. A global perspective on the epidemiology of West Nile virus. Annu. Rev. Entomol. 53:61–81.

    Article  Google Scholar 

  • Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S. 2002. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the middle East. Virology 298:96–105.

    Article  CAS  PubMed  Google Scholar 

  • Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M. 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337.

    Article  CAS  PubMed  Google Scholar 

  • Lvov DK, Butenko AM, Gromashevsky VL, Kovtunov AI, Prilipov AG. 2004. West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. Arch. Virol. Suppl. 18:85–96.

    PubMed  Google Scholar 

  • Moudy RM, Meola MA, Morin LL, Ebel GD, Kramer LD. 2007. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by culex mosquitoes. Am. J. Trop. Med. Hyg. 77:365–370.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ. 2003. Structure of West Nile virus. Science 302:248.

    Article  CAS  PubMed  Google Scholar 

  • Naumann ID, McLachlan K. 1999. Aircraft Disinfection, Australian Quarantine and Inspection Service, Canberra.

    Google Scholar 

  • Rice CM. 1996. Flaviviridae: The Viruses and Their Replication. In Fields Virology. Fields BN, Knipe DM, Howley PM [eds]. Lippincott-Raven Publishers, Phila. 931–960.

    Google Scholar 

  • Snappin KW, Holmes EC, Young DS, Bernard KA, Kramer LD, Ebel GD. 2007. Declining growth rate of West Nile virus in North America. J. Virol. 81:2531–2534.

    Article  Google Scholar 

  • Tempelis CH, Francy DB, Hayes RO, Lofy MF. 1967. Variations in feeding patterns of seven culicine mosquitoes on vertebrate hosts in Weld and Larimer counties, Colorado. Am. J. Trop. Med. Hyg. 16:111–119.

    CAS  PubMed  Google Scholar 

  • Tempelis CH, Reeves WC, Bellamy RE, Lofy MF. 1965. A three-year study of the feeding habits of Culex tarsalis in Kern County, California. Am. J. Trop. Med. Hyg. 14:170–177.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura D. Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kramer, L.D., Kilpatrick, A.M. (2010). Unraveling a Complex Transmission Cycle: Implications for Control. In: Atkinson, P.W. (eds) Vector Biology, Ecology and Control. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2458-9_13

Download citation

Publish with us

Policies and ethics