Skip to main content

Progress in Genetic Engineering of Grapevine for Disease & Stress Tolerance

  • Chapter
  • 2654 Accesses

In 2007, the scientific community and wine world welcomed the complete genome sequencing of Vitis vinifera L cv Pinot Noir (Valasco et al. 2007, The French-Italian Public Consortium for Grapevine Genome Characterization, 2007), which made grape the first fruit and second commercial crop after rice to be fully sequenced. The development of high-throughput analytical techniques for analyzing the genome, proteome and metabolome resulted in the accumulation of large quantities of biological data for the living organisms and grape in particular, which currently is recognized as a ‘systems biology’ approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrios GN (1988) Plant Pathology. Academic Press, New York

    Google Scholar 

  • Agüero C, Uratsu S, Greve C, Powell A, Labavitch J, Meredith C, Dandecar A (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L expressing the pear PGIP gene. Mol Plant Pathol 6:43–51

    Article  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    PubMed  CAS  Google Scholar 

  • Alleweldt G, Spiegel-Roy P, Raisch B (1990) Grapes (Vitis). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops. Acta Hortic 290: 291–337

    Google Scholar 

  • Aronson AI, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    PubMed  CAS  Google Scholar 

  • Asada J (1994) Production and action of toxic oxygen species in photosynthesis tissue. In: Foyer CH, Mullineaux PM (eds) Causes of Phytooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton

    Google Scholar 

  • Atkinson HJ, Urrwin PE, Hansen E, McPherson MJ (1995) Designs for engineered resistance to root-parasitic nematodes. Trends Biotech 13:369–374

    Article  CAS  Google Scholar 

  • Barbier P, Demangeat G, Perin M, Cobanov P, Jacquet C, Walte B (1997) Grapevine genetically transformed with the coat protein gene of grapevine fanleaf virus: an analysis of transformants. Proc of the 12th ICGV Meeting, Abstracts, Lisbon

    Google Scholar 

  • Baulcombe D (1994) Novel strategies for engineering virus resistance in plants. Curr Opin Biotech 5:117–124

    Article  CAS  Google Scholar 

  • Beachy RN (1993) Introduction: Transgenic resistance to plant viruses. virology 4:327–328

    Google Scholar 

  • Beyer Y, Imaly J, Fridovich I (1991) Superoxide dismutases. Prog Nucl Acid Res Mol Biol 40:221–253

    Article  CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  PubMed  CAS  Google Scholar 

  • Bornhoff BA, Harst M, Zyprian E, Töpfer R (2005) Transgenic plants of Vitis vinifera cv Seyval blanc. Plant Cell Rep 24:433–438

    Article  PubMed  CAS  Google Scholar 

  • Bouquet A (1993) Vignes transgeniques et resistance aux virus. Prog Agric Vitic 110:327–330

    Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bowles DJ (1990) Defence-related proteins in higher plants. Annu Rev Biochem 59:873–907

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Burr T, Katz B (1984) Grapevine cutting as potential sites of survival and means of dissemination of Agrobacterium tumefaciens. Plant Dis 68:976–978

    Article  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterials peptides from honeybees. EMBO J 8:2387–2391

    PubMed  CAS  Google Scholar 

  • Chen CH, Brown JH, Morell J, Huang CM (1988) Synthetic magainin analogous with improved antimicrobial activity. FEBS Lett 236:462–466

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Warnick D, Zambrysk P (1994) Nuclear import of Agrobacterium VIRD2 and VIRE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91:3210–3214

    Article  PubMed  CAS  Google Scholar 

  • Collinge DB, Slusarenko AJ (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9:389–410

    Article  CAS  Google Scholar 

  • Colova V, Bordallo P, Phills B, Bausher M (2007) Synchronized somatic embryo development in embryogenic suspensions of grapevine (Muscadinia rotundifolia and Vitis vinifera L). Vitis 1:36-41

    Google Scholar 

  • Colova-Tsolova V, Gollop R, Farchi S, Even S, Sahar N, Perl A (2000) Co-transformation with two vectors and regeneration of transgenic plants on base of high –efficient Agrobacteriummediated gene transfer in grape embryogenic cell suspension. Hort Sci 35(3):393

    Google Scholar 

  • Colova-Tsolova V, Perl A, Krastanova S, Tsvetkov I, Atanassov A (2001) Genetically engineered grape for disease and stress tolerance. In: Roubelakis-Angelakis KA (ed) Molecular Biology & Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, Nederland

    Google Scholar 

  • Courtois N, Gaire F, Mauro M, Toutain S, Burrus M, Pink L, Walter B, Audran J, Duteurtre B (1997) Electroporation of grapevine protoplast: Inoculation of GFLV V into grapevine for the screening of transgenic plants. Proceeding of the 12th ICGV Meeting, Abstracts, Lisbon

    Google Scholar 

  • Coutos-Thevenot P, Mauro MC, Breda C, Buffard D, Esnault R, Hain R, Boulay M (1998) First approaches for improving through molecular way grapevine tolerance to fungus disease. Resumes, VIIeme Symposium International sur la Genetique et l’Amellioration de la Vigne. Montpellier

    Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors - A defence against microbial infection in plants. Annu Rev Plant Physiol 35:243-275

    Article  CAS  Google Scholar 

  • De Beer A, Vivier M (2008) Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biol. 8:75

    Article  PubMed  CAS  Google Scholar 

  • De Francesco L (2006) Vintage genetic engineering. Nature Biotechnology 26 (3):261-263

    Article  CAS  Google Scholar 

  • Destefano-Beltran L, Nagpala PG, Cetiner SM, Denny T, Jaynes MJ (1993) Using genes encoding novel peptides and proteins to enhance disease resistance in plants. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc New York

    Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41:339–367

    Article  CAS  Google Scholar 

  • During J, Porsch P, Fladung M, Lorz H (1993) Thransgenic potato plants resistant to the phytopathogenic bacterium Ervinia corotovora. Plant J 3:587–598

    Article  Google Scholar 

  • Fink J, Boman A, Boman HG, Merrifield RB (1989) Design, synthesis and antibacterial activity of cecropinilike model peptides. Int J Peptide Protein Res 33:412–421

    CAS  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melanospora lini. Phytopathol 32:653–669

    Google Scholar 

  • Flor HH (1956) The complementary genic system in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Franks TK, Powell JS, Choimes S, Marsh E, Iocco P, Sinclair B J, Ford C M, van Heewijck R (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res 15:181–195

    Article  PubMed  CAS  Google Scholar 

  • Gabriel DW, Rolfe BG (1990) Working models of specific recognition in plant-microbe interactions. Annu Rev Phytopathol 28:365–391

    Article  CAS  Google Scholar 

  • Galun E, Breiman A (1997) Transgenic plants. Imperial College Press, London

    Google Scholar 

  • Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) M Molecular characterization of grapevine plants transformed with GFLV resistance genes. Plant Cell Rep 24:655–662

    Article  PubMed  CAS  Google Scholar 

  • Golembovski DV, Lomonossov GP, Zaitlin M (1990) Plants transformed with tobacco mosaic VIRus nonstructural gene sequence are resistant to the VIRus. Proc Natl Acad Sci USA 87:6311–6315

    Article  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterials peptides from honeybees. EMBO J 8:2387–2391

    PubMed  CAS  Google Scholar 

  • Chen CH, Brown JH, Morell J, Huang CM (1988) Synthetic magainin analogous with improved antimicrobial activity. FEBS Lett 236:462–466

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Warnick D, Zambrysk P (1994) Nuclear import of Agrobacterium VIRD2 and VIRE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91:3210–3214

    Article  PubMed  CAS  Google Scholar 

  • Collinge DB, Slusarenko AJ (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9:389–410

    Article  CAS  Google Scholar 

  • Colova V, Bordallo P, Phills B, Bausher M (2007) Synchronized somatic embryo development in embryogenic suspensions of grapevine (Muscadinia rotundifolia and Vitis vinifera L). Vitis 1:36-41

    Google Scholar 

  • Colova-Tsolova V, Gollop R, Farchi S, Even S, Sahar N, Perl A (2000) Co-transformation with two vectors and regeneration of transgenic plants on base of high –efficient Agrobacteriummediated gene transfer in grape embryogenic cell suspension. Hort Sci 35(3):393

    Google Scholar 

  • Colova-Tsolova V, Perl A, Krastanova S, Tsvetkov I, Atanassov A (2001) Genetically engineered grape for disease and stress tolerance. In: Roubelakis-Angelakis KA (ed) Molecular Biology & Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, Nederland

    Google Scholar 

  • Courtois N, Gaire F, Mauro M, Toutain S, Burrus M, Pink L, Walter B, Audran J, Duteurtre B (1997) Electroporation of grapevine protoplast: Inoculation of GFLV V into grapevine for the screening of transgenic plants. Proceeding of the 12th ICGV Meeting, Abstracts, Lisbon

    Google Scholar 

  • Coutos-Thevenot P, Mauro MC, Breda C, Buffard D, Esnault R, Hain R, Boulay M (1998) First approaches for improving through molecular way grapevine tolerance to fungus disease. Resumes, VIIeme Symposium International sur la Genetique et l’Amellioration de la Vigne. Montpellier

    Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors ’ A defence against microbial infection in plants. Annu Rev Plant Physiol 35:243-275

    Article  CAS  Google Scholar 

  • De Beer A, Vivier M (2008) Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biol. 8:75

    Article  PubMed  CAS  Google Scholar 

  • De Francesco L (2006) Vintage genetic engineering. Nature Biotechnology 26 (3):261-263

    Article  CAS  Google Scholar 

  • Destefano-Beltran L, Nagpala PG, Cetiner SM, Denny T, Jaynes MJ (1993) Using genes encoding novel peptides and proteins to enhance disease resistance in plants. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc New York

    Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41:339–367

    Article  CAS  Google Scholar 

  • During J, Porsch P, Fladung M, Lorz H (1993) Thransgenic potato plants resistant to the phytopathogenic bacterium Ervinia corotovora. Plant J 3:587–598

    Article  Google Scholar 

  • Fink J, Boman A, Boman HG, Merrifield RB (1989) Design, synthesis and antibacterial activity of cecropinilike model peptides. Int J Peptide Protein Res 33:412–421

    CAS  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melanospora lini. Phytopathol 32:653–669

    Google Scholar 

  • Flor HH (1956) The complementary genic system in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Franks TK, Powell JS, Choimes S, Marsh E, Iocco P, Sinclair B J, Ford C M, van Heewijck R (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res 15:181–195

    Article  PubMed  CAS  Google Scholar 

  • Gabriel DW, Rolfe BG (1990) Working models of specific recognition in plant-microbe interactions. Annu Rev Phytopathol 28:365–391

    Article  CAS  Google Scholar 

  • Galun E, Breiman A (1997) Transgenic plants. Imperial College Press, London

    Google Scholar 

  • Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) M Molecular characterization of grapevine plants transformed with GFLV resistance genes. Plant Cell Rep 24:655–662

    Article  PubMed  CAS  Google Scholar 

  • Golembovski DV, Lomonossov GP, Zaitlin M (1990) Plants transformed with tobacco mosaic VIRus nonstructural gene sequence are resistant to the VIRus. Proc Natl Acad Sci USA 87:6311–6315

    Article  Google Scholar 

  • Gölless R, da Camara Machado A, Minafra A, Savino G, Saldareli GP, Marteli H, Puringer H, Katinger H, Laimer da Camara Machado M (1998) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus, grapevine virus A and grapevine virus B. Resumes, VIIeme Symp Intern sur la Genetique et l’amellioration de la Vigne. Montpellier

    Google Scholar 

  • Gölless R, da Camara Machado A, Tsolova V, Bouquet A, Moser R, Katinger H, Laimer da Camara Machado M (1997) Transformation of somatic embryos of Vitis sp with different constructs containing nucleotide sequences from nepovirus coat protein genes. Acta Hortic 447:265–272

    Google Scholar 

  • Gray DJ, Meredith CP (1992) The Grape. In: Hamershlag F, Litz RE (eds) Biotechnology in Agriculture, N8: Biotechnology of Perennial Crops. CAB International, Wallingford

    Google Scholar 

  • Gressel J, Galun E (1994) Genetic controls of photooxidant tolerance. In Foyer CH, Mullineaux PM (eds) Causes of Phytooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton

    Google Scholar 

  • Gutoranov P, Tsvetkov I, Colova-Tsolova V, Atanassov A (2001) Genetically engineered grapevines carrying gflv coat protein and antifreeze genes. Agric Consp Scient 66 (1):71-76

    Google Scholar 

  • Haberman E (1972) Bee and wasp venoms. Science 177:314–322

    Article  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel J (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  • Holmström JO, Welin B, Mandal A, Kritiansdottir I, Teeri TH, Lamark T, Strom AR, Pavla ET (1994) Production of the Escherichia coli betain-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine in transgenic plants. Plant J 6:749–758

    Article  PubMed  Google Scholar 

  • Hung XS, Mullins MG (1989) Application of biotechnology to transferring alien genes to grapevine. Hereditas 11:9–11

    Google Scholar 

  • Jaines JM, Burton CA, Barr SB, Jeffers GW, White JL, Enright FM, Klei TR, Laine RA, Julian GR (1988) In vitro cytocidal effect of novel lytic peptides on Plasmodium falcyparum and Tryponosoma cruzi. FSAEB J 2:2878–2883

    Google Scholar 

  • Keen NT (1990) Gene-for-gene complementary in plant-pathogen interactions. Annu Rev Genet 24:447–463

    Article  PubMed  CAS  Google Scholar 

  • Keen NT, Dawson WO (1992) Pathogen avirulence genes and elicitors of plant defense. In: Boller T, Mains F (eds) Genes Involved in Plant Defense, Vol 8, Plant Gene research. Springer-Verlag, New York

    Google Scholar 

  • Kikkert JR, Ali GS, Striem MJ, Martens MH, Wallace PG, Molino L, Reisch BI (1997) Genetic engineering of grapevine (Vitis sp) for enhancement of disease resistance. Acta Horticult 447:273–279

    Google Scholar 

  • Kikkert JR, Reustle GM, Ali GS, Wallace PG, Reisch BI (1998) Expression of a fungal chitinase in Vitis vinifera L Merlot and Chardonnay plants produced by biolistic transformation. Resumes, VIIeme Symp Intern sur la Genetique et l’Amellioration de la Vigne. Montpellierr

    Google Scholar 

  • Kikkert JR, Thomas MR, Reisch BI (2001) Grapevine genetic engineering. In: Roubelakis-Angelakis KA (ed) Molecular Biology & Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, Nederland

    Google Scholar 

  • Krastanova S, Ling JS, Zhu HY, Xue B, Burr TJ, Gonsalves D (1998) Development of transgenic grapevine rootstocks with the genes from grapevine fanleaf virus and grapevine leafroll associated closteroviruses 2 and 3. Resumes VIIeme Symp Intern sur la Genetique et L’Amellioration de la Vigne. Montpellier

    Google Scholar 

  • Krastanova S, Ling JS, Zhu HY, Xue B, Burr TJ, Gonsalves D (2000) Development of transgenic grapevine rootstocks with the genes from grapevine fanleaf virus and grapevine leafroll associated closteroviruses 2 and 3. Acta Hortic 528 (I):367-372

    CAS  Google Scholar 

  • Krastanova S, Marc-Martin S, Gugerli P, Sigrist-Prince, M-E, Spielmann A (1996) Transformation genetique d’embryos somatiques de viqne par Agrobacterium tumefaciens et regeneration de plants exprimant la protein capsidiale et la replicase du virus du GFLV et ou de ArMV. The 2nd Colmar Symp for Biological Sciences, Plant Biology, May 2-3. CREFColmar

    Google Scholar 

  • Krastanova S, Perrin M, Barbier P, Demangeat G, Cornuet P, Bardonet N, Otten L, Pink L, Walter B (1995) Transformation of grapevine rootstock with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep 14:550–554

    Google Scholar 

  • Krastanova S, Perrin M, Barbier P, Demangeat G, Walter B (1995) Transformation de la vigne avec le gene de la proteine de coque d’un virus transmis par nematodes, le grapevine fanleaf nepovirus (GFLV), et tests de protection vis a vis du court-noue. Communication aux Rencontre de virology vegetale. CNRS/INRA, Aussios, Janvier

    Google Scholar 

  • Krastanova S, Walter B, Perrin M, Cornuet P, Bardonet N, Pinck L, Otten L (1993) Transfer and expression of the coat protein gene of grapevine fanleaf virus in grapevine. Extended abstracts of the 11th Meeting ICVG, Montreux, Switzerland, 6-9 Sept. Federal Agricultural Research Station of Changins, CH-Nyon, Switzerland

    Google Scholar 

  • Lamb CG, Lawton MA, Dron M, Dixon R (1989) Signals and transduction mechanisms for activation of plant defences against microbial attack. Cell 56:215–224

    Article  PubMed  CAS  Google Scholar 

  • Le Gall O, Torregrosa L, Danglot Y, Candresse T, Bouquet A (1994) Agrobacterium mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci 102:161–170

    Article  CAS  Google Scholar 

  • Logemann J, Jack G, Tommerup H, Mundy J, Schell J (1992) Expression of a barley ribosomeinactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio/Technology: 305-308

    Google Scholar 

  • Logemann J, Shell J (1993) The impact of biotechnology on plant breeding, or how to combine increases in agricultural productivity with an improved protection of the environment. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Maghuly F, Leopold S, Machado A, Fernandez E, Khan M, Gambino G, Laimer M (2006) Molecular characterization of grapevines plants transformed with GFLV resistance gene. Plant Cell Rep 25:546–553

    Article  PubMed  CAS  Google Scholar 

  • Martinelli L, Buzkan N, Minafra A, Saldarelli P, Costa D, Poletti V, Festi S, Perl A, Martelli GP (1998) Genetic transformation of grape for resistance to viruses related to the rugose wood disease complex. Resumes VIIeme Symp Intern sur la Genetique et l’Amellioration de la Vigne, Montpellier

    Google Scholar 

  • Mauro MC, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P (1995) High efficiency regeneration grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106

    Article  CAS  Google Scholar 

  • Mauro MC, Walter B, Pink L, Valat L, Barbier P, Boulay M, Coutos-Thevenot P (1998) Analysis of 41B grapevine rootstocks for grapevine fanleaf virus resistance. Resumes VIIeme Symp Intern sur la Genetique et l’amellioration de la Vigne, Montpellier

    Google Scholar 

  • Mezzetti B, Pandolfini T., Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotech 2:18

    Google Scholar 

  • Murata N, Ishizaki-Nishizava O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in chilling sensitivity of plants. Nature 356:710–713

    Article  CAS  Google Scholar 

  • Negrul A (1936) The Genetics Basis of Grape Breeding. The Lenin Academy of Agricultural Science Press, Leningrad

    Google Scholar 

  • Okada M, Natori S (1985) Primary structure of sarcotoxin I, and antibacterial protein induced in hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 260:7174–7177

    PubMed  CAS  Google Scholar 

  • Pearson R, Goheen A (1988) Compendium of Grape Diseases MN: APS Press, St Paul

    Google Scholar 

  • Perl A, Colova-Tsolova V, Esdat Y, (2004) Agrobacterium –mediated transformation of grape embryogenic calli. In: Curtis I (ed) Transgenic Crop of the World, Essential Protocols. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Perl A, Eshdat Y (1998) DNA Transfer and gene expression in transgenic grapes. In: Tombs MP (ed) Biotechnology and Genetic Engineering Reviews. Intercept Ltd, Andover

    Google Scholar 

  • Powel AP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  Google Scholar 

  • Pretorius IS (2005) Grape and wine biotechnology: challenges, opportunities and potential benefits. Austr J Grape Wine Res 1 (2):83-108

    Article  Google Scholar 

  • Raisch B, Pratt C (1996) Grapes. In: Janic J, Moore J (eds) Fruit Breeding. Vine and Small Fruits. John Wiley & Sons, Inc New York

    Google Scholar 

  • Rezaian MA, Skene JG, Ellis JG (1988) Anti-sense RNAs of cucumber mosaic virus in transgenic plants assessed for control of the virus. Plant Mol Biol 11:463–471

    Article  Google Scholar 

  • Roustan JP, Colrat S, Dalmayrac S, Guillen P, Guis M, Martinez-Reina G, Deswarte C (1998) Expression in grapevine of an NADPH-dependent adelhyde reductase which detoxifies eutypine, a toxin from Eutypa lata. Resumes, VIIeme Symp Intern sur la Genetique etl’amellioration de la Vigne, Montpellier

    Google Scholar 

  • Sanchez-Serano J, Amati S, Dammann C, Ebneth M, Herbers J, Hildmann T, Lorberth R, Prat S, Willmitzer L (1993) Proteinase inhibitors in the potato response to wounding. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome. Theor Biol 113:395–405

    Article  Google Scholar 

  • Scorza R, Cordts JM, Gray DJ, Gonsalves D, Emershad RL, Ramming DW (1996) Producing transgenic Thompson Seedless grape (Vitis vinifera L) plants. J Am Soc Hortic Sci 121:616–619

    Google Scholar 

  • Scorza R, Cordts JM, Ramming DW, Emershad RL (1995) Transformation of grape (Vitis vinifera L) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Reports 14:589–592

    Article  CAS  Google Scholar 

  • Scorza, R, Gray DJ (2001) Disease resistance in Vitis , US Patent No. 6,232,528 B1

    Google Scholar 

  • Scorza, R, Gray DJ (2006) Disease resistance in Vitis , US Patent No. 7,151,203 B2

    Google Scholar 

  • Selsted M, Broun DM, Delange RG, Harwig SL, Lehrer RI (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophilis. J Biol Chem 260:4579–4584

    PubMed  CAS  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Pliakonis ED, Paschalidis KA, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic Glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  PubMed  CAS  Google Scholar 

  • Smith CJ (1991) Biochemistry and Molecular Biology of Plant-Pathogen Interaction. Clarendon Press, Oxford

    Google Scholar 

  • Spielman A, Krastanova S, Douet–Orhant V, Marc-Martin S, Prince Sigrist MH, Gugerli P (1998) Resistance to nepoVIRuses in grapevine: expression of several putative resistance genes in transgenic plants. Resumes VIIeme Symp Intern sur la Genetique et l’Amellioration de la Vigne Montpellier

    Google Scholar 

  • Spielmann A, Douet-Orhand V, Krastanova S, Gugerli P (2000) Resistance to nepoviruses in grapevine and Nicotiana benthamiana: Expression of several putative resistance genes in transgenic plants. Acta Hortic 528 (I):373-378

    CAS  Google Scholar 

  • Spielmann A, Krastanova S, Douet-Ohrant V, Marc-Martin S, Prince Sigrist, M-E, Gugerli P (1997) Resistance to nepoviruses in grapevine: Expression of several putative resistance genes in transgenic plants. Proc of the 12th ICGV Meeting, Abstracts, Lisbon

    Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  PubMed  CAS  Google Scholar 

  • Tesniere C Torregrosa L, Pradal M, Souquet J, Gilles C, Santos JD, Chatelet P, Gunata Z (2006) Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J Exp Bot 57 (1):91-99

    Article  PubMed  CAS  Google Scholar 

  • The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggest hexaploididzation in major angiosperm phyla. Nature 449(7161):463-467

    Google Scholar 

  • Torregrosa L (1995) Biotechnologie de la vigne: les techniques de regeneration in vitro. Progr Agric Vitic 112:479–489

    Google Scholar 

  • Torregrosa L, Le Gall O, Danglot Y, Candresse T, Bouquet A (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of the grape chrome mosaic virus (GCMV). Proc of the VIth International Symposium on Grape Breeding, Yalta, Crime, Ukraine

    Google Scholar 

  • Tsvetkov I, Tsolova V, Atanassov A (2000) Gene transfer for stress resistance in grapes. Acta Hortic 528 (I):389-394

    CAS  Google Scholar 

  • Valat L, Fuchs M, Burrus M (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: Characterization and reaction to virus infection upon protoplast electroporation Plant Science 170(4):739-747

    CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2(12): e1326 doi:10.1371/journal.poe.0001326

    Article  PubMed  CAS  Google Scholar 

  • Vidal J, Kikkert J, Malnoy M, Wallace P, Barnard J, Reisch B (2006) Evaluation of transgenic Chardonnay (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15(1):69-82

    Article  PubMed  CAS  Google Scholar 

  • Vidal J, Kikkert J, Wallace,P, Reisch B (2003) High-efficiency biolistic co-transformation and regeneration of Chardonnay (Vitis vinifera L) containing npt-II and anthimicrobial peptide genes. Plant Cell Rep 22 (4):252-260

    Article  PubMed  CAS  Google Scholar 

  • Vidal JR, Kikkert JB, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassete technology. Plant Cell Rep 25:807–814

    Article  PubMed  CAS  Google Scholar 

  • Walton J (1997) Biochemical Plant Pathology. In: Day PM, Harborne JB (eds) Plant Biochemistry. Academic Press, San Diego

    Google Scholar 

  • Wolter FP, Schmidt R and Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11:4685–4692

    PubMed  CAS  Google Scholar 

  • Xue B, Ling K-S, Reid C, Krastanova S, Sekiya M, Momol E, Sule S, Mozar J, Gonsalves D (1999) Transformation of five grape rootstocks with plant VIRus gene and a VIR E2 gene from Agrobacterium tumefaciens. In vitro Cell Dev Biol- Plant 35:226–231

    Article  CAS  Google Scholar 

  • Yamamato T, Iketani H, Ieki H, Nishizawa Y, Nostuka K, Hibi T, Hayashi T, Matusta N (2000) Transgeneic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  Google Scholar 

  • Yoneyama J, Hiroyuki A (1993) Transgenic plants resistant to diseases by the detoxification of toxins. In: Chet I (ed) Biotechnology in Plant Disease Control. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Zasloff M (1987) Magianins, a class of antimicrobial peptides from Xenopus laevis skin: isolation, characterization of two active forms, and partial c DNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Colova-Tsolova, V., Perl, A., Krastanova, S., Samuelian, S., Atanassov, A. (2009). Progress in Genetic Engineering of Grapevine for Disease & Stress Tolerance. In: Roubelakis-Angelakis, K.A. (eds) Grapevine Molecular Physiology & Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2305-6_19

Download citation

Publish with us

Policies and ethics