Skip to main content

Current concepts in immunology

  • Chapter
  • 1059 Accesses

The main function of the immune system is to protect the host from certain death due to numerous potential pathogens present in the environment. The development and maintenance of immunity is dependent on a complex and highly sophisticated defense organization functionally divided into the innate and adaptive immune systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allison J P, Lanier LL. Structure, function and serology of the T-cell antigen receptor complex. Annu Rev Immunol 1987; 5:503–540.

    CAS  PubMed  Google Scholar 

  2. Asherson GL, Colizzi V, Zembala M. An overview of T-suppressor cell circuits. Annu Rev Immunol 1986; 4:37–68.

    CAS  PubMed  Google Scholar 

  3. Baehner RL, Boxer LA, Davis J. The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood 1976; 48:309–313.

    CAS  PubMed  Google Scholar 

  4. Barlozzari T, Reynolds CW, Herberman RB. In vivo role of natural killer cells: involvement of large granular lymphocytes in the clearance of tumor cells in anti-asialo GM1-treated rats. J Immunol 1983; 131:1024–1027.

    CAS  PubMed  Google Scholar 

  5. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Jr. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 1987; 84:9238–9242.

    CAS  PubMed  Google Scholar 

  6. Bich Thuy LT, Dukovich M, Peffer NJ, et al. Direct activation of human resting T cells by IL 2: The role of an Il 2 receptor distinct from the Tac protein. J Immunol 1987; 139:1550–1556.

    CAS  PubMed  Google Scholar 

  7. Bierer BE, Mentzer SJ, Greenstein JL, Burakoff SJ. The role of functional cell surface antigens in T cell activation. Year Immunol 1986; 2:39–59.

    CAS  PubMed  Google Scholar 

  8. Buckley CE III. Delayed hypersensitivity skin testing. In: Rose NR, Friedman H, Fahey JL, eds. Manual of clinical laboratory immunology. Washington, DC: American Society for Microbiology, 1986; 259–273.

    Google Scholar 

  9. Carpenter CB. Lymphocyte-mediated cytotoxicity. In: Rose NR, Friedman H, Fahey JL, eds. Manual of clinical laboratory immunology. Washington, DC: American Society of Microbiology, 304–307.

    Google Scholar 

  10. Ceuppens JL, Baroja ML, Lorre K, et al. Human T cell activation with phytohemagglutinin. The function of IL-6 as an accessory signal. J Immunol 1988; 141:3868–3874.

    CAS  Google Scholar 

  11. Chiu CP, Moulds C, Coffman RL, et al. Multiple biological activities are expressed by a mouse interleukin 6 cDNA clone isolated from bone marrow stromal cells. Proc Natl Acad Sci USA 1988; 85:7099–7103.

    CAS  PubMed  Google Scholar 

  12. Clevers H, Alarcon B, Wileman T, Terhorst C. The T cell receptor/ CD3 complex: a dynamic protein ensemble. Annu Rev Immunol 1988; 6:629–662.

    CAS  PubMed  Google Scholar 

  13. Crabtree GR. Contingent genetic regulatory events in T lymphocyte activation. Science 1989; 243:355–361.

    CAS  PubMed  Google Scholar 

  14. Crump WL 3d, Own Schaub LB, Grimm EA. Synergy of human recombinant interleukin 1 with interleukin 2 in the generation of lymphokine-activated killer cells. Cancer Res 1989; 49:149–153.

    CAS  PubMed  Google Scholar 

  15. Dean JH, Connor R, Herberman RB, et al. The relative proliferation index as a more sensitive parameter for evaluating lymphopro-liferative responses of cancer patients to mitogens and alloantigens. Int J Cancer 1977; 20:359–370.

    CAS  PubMed  Google Scholar 

  16. Dillman RO, Oldham RK, Tauer KW, et al. Continuous interleukin-2 and lymphokine activated killer cells for advanced cancer: an NBSG trial. J Clin Onc 1991; 9:1233–1240.

    CAS  Google Scholar 

  17. Dinarello CA. Interleukin-1 and its biologically related cytokines. Adv Immunol 1989; 44:153–206.

    CAS  PubMed  Google Scholar 

  18. Dinarello CA, Mier JW. Lymphokines. N Engl J Med 1987; 317:940–945.

    CAS  PubMed  Google Scholar 

  19. Dorf ME, Benacerraf B. Suppressor cells and immunoregulation. Annu Rev Immunol 1984; 2:127–157.

    CAS  PubMed  Google Scholar 

  20. Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-ablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoms. J Clin Onc 2005; 23:2346–2357.

    CAS  Google Scholar 

  21. Dukovich M, Wano Y, Le thi BT, et al. A second human interleu-kin-2 binding protein that may be a component of high-affinity interleukin-2 receptors. Nature 1987; 327:518–522.

    CAS  PubMed  Google Scholar 

  22. Durum SK, Schmidt JA, Oppenheim JJ. Interleukin 1: an immunological perspective. Annu Rev Immunol 1985; 3:263–287.

    CAS  PubMed  Google Scholar 

  23. Dustin ML, Springer TA. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule- (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol 1988; 107:321–331.

    CAS  PubMed  Google Scholar 

  24. Dvorak HF, Galli SJ, Dvorak AM. Cellular and vascular manifestations of cell-mediated immunity. Hum Pathol 1986; 17: 122–137.

    CAS  PubMed  Google Scholar 

  25. Fauci AS, Pratt KR. Activation of human B lymphocytes. I. Direct plaque-forming cell assay for the measurement of polyclonal activation and antigenic stimulation of human B lymphocytes. J Exp Med 1976; 144:674–684.

    CAS  PubMed  Google Scholar 

  26. Gallin JI, Quie PG. Leukocyte chemotaxis: methods, physiology and clinical implications. New York: Raven Press, 1978.

    Google Scholar 

  27. Ganser A, Ottmann OG, Erdmann H, et al. The effect of recombinant human granulocyte-macrophage colony-stimulating factor on neutropenia and related morbidity in chronic severe neutropenia. Ann Intern Med 1989; 111:887–892.

    CAS  PubMed  Google Scholar 

  28. Gearing AJ, Johnstone AP, Thorpe R. Production and assay of the interleukins. J Immunol Methods 1985; 83:1–27.

    CAS  PubMed  Google Scholar 

  29. Geller RL, Gromo G, Inverardi L, et al. Stepwise activation of T cells. Role of the calcium ionophore A23187. J Immunol 1987; 139:3930–3934.

    CAS  Google Scholar 

  30. Gillis S. Interleukin 2: biology and biochemistry. J Clin Immunol 1983; 3:1–13.

    CAS  PubMed  Google Scholar 

  31. Goldfarb RH, Serrate SA. Natural killer cells. In: Yoshida T, ed. Investigation of cell-mediated immunity. New York: Churchill-Livingston, 1985; 65–80.

    Google Scholar 

  32. Grey Hm, Sette A, Buus S. How T cells see antigen. Sci Am 1989; 261:56–64.

    CAS  PubMed  Google Scholar 

  33. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 1982; 155:1823–1841.

    CAS  Google Scholar 

  34. Grimm EA, Owen Schaub LB, Loudon WG, Yagita M. Lymphokine-activated killer cells. Induction and function. Ann NY Acad Sci 1988; 532:380–386.

    CAS  Google Scholar 

  35. Gromo G, Geller RL, Inverardi L, Bach FH. Signal requirements in the step-wise functional maturation of cytotoxic T lymphocytes. Nature 1987; 327:424–426.

    CAS  PubMed  Google Scholar 

  36. Gromo G, Inverardi L, Geller RL, et al. The stepwise activation of cytotoxic T lymphocytes. Immunol Today 1987; 8:259–261.

    CAS  Google Scholar 

  37. Groopman JE, Molina JM, Scadden DT. Hematopoietic growth factors. Biology and clinical applications. N Engl J Med 1989; 321:1449–1459.

    CAS  Google Scholar 

  38. Han X, Itoh K, Balch CM, Pellis NR. Recombinant interleukin 2 (RIL-4) inhibits interleukin 2-induced activation of peripheral blood lymphocytes. Lymphokine Res 1988; 7:227–235.

    CAS  PubMed  Google Scholar 

  39. Hanna N, Fidler IJ. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 1980; 65:801–809.

    CAS  PubMed  Google Scholar 

  40. Harada N, Matsumoto M, Koyama N, et al. T cell replacing factor/ interleukin 5 induces not only B-cell growth and differentiation, but also increased expression of interleukin 2 receptor on activated B-cells. Immunol Lett 1987; 15:205–215.

    CAS  PubMed  Google Scholar 

  41. Haynes BF. Human T lymphocyte antigens as defined by monoclonal antibodies. Immunol Rev 1981; 57:127–161.

    CAS  PubMed  Google Scholar 

  42. Henkart PA. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol 1985; 3:31–58.

    CAS  PubMed  Google Scholar 

  43. Herberman RB, Thurman GB. Approaches to the immunological monitoring of cancer patients treated with natural or recombinant interferons. J Biol Response Modif 1983; 2:548–562.

    CAS  Google Scholar 

  44. Hirano T, Taga T, Yamasaki K, et al. A multifunctional cytokine (IL-6/BSF-2) and its receptor. Int Arch Allergy Appl Immunol 1989; 88:29–33.

    CAS  PubMed  Google Scholar 

  45. Hong R. Immunodeficiency. In: Rose NR, Friedman H, Fahey JL, eds. Manual of clinical laboratory immunology. Washington, DC: American Society for Microbiology, 1986; 702–722.

    Google Scholar 

  46. IUIS-WHO Nomenclature Subcommittee. Announcement. J Immunol 1985; 134:659–660.

    Google Scholar 

  47. Kawase I, Urdal DL, Brooks CG, Henney CS. Selective depletion of NK cell activity in vivo and its effect on the growth of NK-sensitive and NK-resistant tumor cell variants. Int J Cancer 1982; 29:567–574.

    CAS  PubMed  Google Scholar 

  48. Kehrl JH, Muraguchi A, Butler JL, et al. Human B cell activation, proliferation and differentiation. Immunol Rev 1984; 78:75–96.

    CAS  PubMed  Google Scholar 

  49. Kishimoto T. Factors affecting B-cell growth and differentiation. Annu Rev Immunol 1985; 3:133–157.

    CAS  PubMed  Google Scholar 

  50. Kleinerman ES, Schroit AJ, Fogler WE, Fidler IJ. Tumoricidal activity of human monocytes activated in vitro by free and lipo-some-encapsulated human lymphokines. J Clin Invest 1983; 72:304–315.

    CAS  PubMed  Google Scholar 

  51. Koj A. The role of interleukin-6 as the hepatocyte stimulating factor in the network of inflammatory cytokines. Ann NY Acad Sci 1989; 557:1–8.

    CAS  PubMed  Google Scholar 

  52. Kovacs EJ, Beckner SK, Longo DL, et al. Cytokine gene expression during the generation of human lymphokine-activated killer cells: Early induction of interleukin 1β by interleukin 2. Cancer Res 1989; 49:940–944.

    CAS  PubMed  Google Scholar 

  53. Kumar A, Moreau JL, Baran D, Theze J. Evidence for negative regulation of T cell growth by low affinity interleukin 2 receptors. J Immunol 1987; 138:1485–1493.

    CAS  PubMed  Google Scholar 

  54. Kupfer A, Singer SJ. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu Rev Immunol 1989; 7:309–337.

    CAS  PubMed  Google Scholar 

  55. Lafreniere R, Rosenberg SA. Adoptive immunotherapy of murine hepatic metastases with lymphokine activated killer (LAK) cells and recombinant interleukin 2 (RIL 2) can mediate the regression of both immunogenic and nonimmunogenic sarcomas and an ade-nocarcinoma. J Immunol 1985; 135:4273–4280.

    CAS  PubMed  Google Scholar 

  56. Lafreniere R, Rosenberg SA. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res 1985; 45: 3735–3741.

    CAS  PubMed  Google Scholar 

  57. Lasser A. The mononuclear phagocytic system: a review. Hum pathol 1983; 14:108–126.

    CAS  PubMed  Google Scholar 

  58. Lipton JN, Nathan DJ. Interactions between lymphocytes and macrophages in hematopoiesis. In: Golde DW, Takaku F, eds. Hematopoietic stem cells. New York: Marcel Dekker, 1980; 145–202.

    Google Scholar 

  59. Lotzova E, Herberman RB. Immunobiology of natural killer cells. Boca Raton, FL: CRC Press, 1986.

    Google Scholar 

  60. Liu W, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4(+) Treg cells. J Exp Med 2006; 203:1701–1711.

    CAS  PubMed  Google Scholar 

  61. Maluish AE, Strong DM. Lymphocyte proliferation. In: Rose NR, Friedman H, Fahey JL, eds. Manual of clinical laboratory immunology. Washington, DC: American Society of Microbiology, 1986; 274–281.

    Google Scholar 

  62. Mancini G, Carbonara AO, Heremans JF. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 1965; 2:235–254.

    CAS  PubMed  Google Scholar 

  63. Meriney DK. Methodology of immunologic assays relating to humoral components. In: Grieco MH, Meriney DK, eds. Immunodiagnosis for clinicians. Chicago, IL: Year Book Medical Publishers, 1983; 19–39.

    Google Scholar 

  64. Meuer SC, Acuto O, Hercent T, Schlossman SF, Reinherz EL. The human T-cell receptor. Annu Rev Immunol 1984; 2:23–50.

    CAS  PubMed  Google Scholar 

  65. Michel RH, Pancake SJ, Noseworthy J, Karnovsky ML. Measurement of rates of phagocytosis: the use of cellular mono-layers. J Cell Biol 1969; 40:216–224.

    Google Scholar 

  66. Millard PJ, Henkart MP, Reynolds CW, Henkart PA. Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol 1984; 132:3197–3204.

    CAS  PubMed  Google Scholar 

  67. Miyajima A, Miyatake S, Schreurs J, et al. Coordinate regulation of immune and inflammatory responses by T cell-derived lym-phokines. FASEB J 1988; 2:2462–2473.

    CAS  PubMed  Google Scholar 

  68. Moller G. Concanavalin-A-activated lymphocytes suppress immune responses in vitro but are helper cells in vivo. Scand J Immunol 1985; 21:31–34.

    CAS  PubMed  Google Scholar 

  69. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145–173.

    CAS  PubMed  Google Scholar 

  70. Mule JJ, Shu S, Rosenberg SA. The antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo. J Immunol 1985; 135:646–652.

    CAS  PubMed  Google Scholar 

  71. Muller Eberhard HJ. The molecular basis of target cell killing by human lymphocytes and of killer cell self-protection. Immunol rev 1988; 103:87–98.

    CAS  PubMed  Google Scholar 

  72. Munthe-Kaas AC, Kaplan G. Endocytosis by macrophages. In: Carr I, Daems WT, eds. The reticuloendothelial system: a comprehensive treatise. New York: Plenum, 1980; 19–55.

    Google Scholar 

  73. Nagler A, Lanier LL, Phillips JH. The effects of IL-4 on human natural killer cells. A potent regulator of IL-2 activation and proliferation. J Immunol 1988; 141:2349–2351.

    CAS  Google Scholar 

  74. Nathan CF. Secretory products of macrophages. J Clin Invest 1987; 79:319–326.

    CAS  PubMed  Google Scholar 

  75. Neckers LM, Cossman J. Transferrin receptor induction in mito-gen-stimulated human T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2. Proc Natl Acad Sci USA 1983; 80:3494–3498.

    CAS  PubMed  Google Scholar 

  76. Ochoa AC, Gromo G, Alter BJ, et al. Long-term growth of lymphokine-activated killer (LAK) cells: role of anti-CD3, beta-IL 1, interferon-gamma and -beta. J Immunol 1987; 138:2728–2733.

    CAS  PubMed  Google Scholar 

  77. Ochoa AC, Hasz DE, Rezonzew R, et al. Lymphokine-activated killer activity in long-term cultures with anti-CD3 plus interleukin 2: Identification and isolation of effector subsets. Cancer Res 1989; 49:963–968.

    CAS  PubMed  Google Scholar 

  78. OGarra A, Umland S, DeFrance T, Christiansen J. ‘B-cell factors’ are pleiotropic. Immunol Today 1988; 9:45–54.

    CAS  Google Scholar 

  79. OGarra A, Warren DJ, Sanderson CJ, et al. Interleukin-4 (B cell growth factor-II/eosinophil differentiation factor) is a mitogen and differentiation factor for preactivated murine B lymphocytes. Curr Top Microbiol Immunol 1986; 132:133–141.

    CAS  Google Scholar 

  80. Oldham RK. Natural killer cells: history and significance. J Biol Response Modif 1982; 1:217–231.

    Google Scholar 

  81. Oldham RK. NK cells: artifact to reality, an odyssey in biology. Can Metas Rev 1983; 2:232–336.

    Google Scholar 

  82. Oldham RK, Gail MH, Baker MA, et al. Immunological studies in a double blind randomized trial comparing intrapleural BCG against placebo in patients with resected stage I non-small cell lung cancer. Cancer Immunol Immunother 1982; 13:164–173.

    CAS  PubMed  Google Scholar 

  83. Oldham RK, Weese JL, Herberman RB, et al. Immunological monitoring and immunotherapy in carcinoma of the lung. Int J Cancer 1976; 18:739–749.

    Google Scholar 

  84. Ortaldo JR, Herberman RB. Heterogeneity of natural killer cells. Annu Rev Immunol 1984; 2:359–394.

    CAS  PubMed  Google Scholar 

  85. Ortaldo JR, Mason A, Overton R. Lymphokine-activated killer cells. Analysis of progenitors and effectors. J Exp med 1986; 164:1193–1205.

    CAS  Google Scholar 

  86. Owen-Schaub L, Yagita M, Tsudo M, et al. Evidence for distinct IL-2 receptors in induction versus maintenance of LAK function. Ann NY Acad Sci 1988; 532:480–481.

    Google Scholar 

  87. Paetkau V, Bleackley RC, Riendeau D, et al. Toward the molecular biology of IL-2. Contemp Top Mol Immunol 1985; 10:35–61.

    CAS  PubMed  Google Scholar 

  88. Palacios R, Henson G, Steinmetz M, McKearn JP. Interleukin-3 supports growth of mouse pre-B-cell clones in vitro. Nature 1984; 309:126–131.

    CAS  PubMed  Google Scholar 

  89. Pasternack MS, Verret CR, Liu MA, Eisen HN. Serine esterase in cytolytic T lymphocytes. Nature 1986; 322:740–743.

    CAS  PubMed  Google Scholar 

  90. Perlmutter DH. IFNβ2/IL-6 is one of several cytokines that modulate acute phase gene expression in human hepatocytes and human macrophages. Ann NY Acad Sci 1989; 557:332–342.

    CAS  PubMed  Google Scholar 

  91. Poulter LW, Seymour GJ, Duke O, et al. Immunohistological analysis of delayed-type hypersensitivity in man. Cell Immunol 1982; 74:358–369.

    CAS  PubMed  Google Scholar 

  92. Raulet DH. The structure, function, and molecular genetics of the gamma/delta T cell receptor. Annu Rev Immunol 1989; 7: 175–207.

    CAS  PubMed  Google Scholar 

  93. Reed JC, Alpers JD, Nowell PC, Hoover RG. Sequential expression of proto-oncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci USA 1986; 83:3982–3986.

    CAS  PubMed  Google Scholar 

  94. Reed JC, Prystowsky MB, Kern JA, et al. Regulation of protooncogene expression during lymphocyte activation and proliferation. In: Gupta S, Paul WE, Fauci AS, eds. Advances in experimental medicine and biology. New York: Plenum, 1986; 249–262.

    Google Scholar 

  95. Reinherz EL, Schlossman SF. Current concepts in immunology: regulation of the immune response – inducer and suppressor T-lymphocyte subsets in human beings. N Engl J Med 1980; 303:370–373.

    CAS  PubMed  Google Scholar 

  96. Reinherz EL, Schlossman SF. The characterization and function of human immunoregulatory T lymphocyte subsets. Immunol Today 1981; 2:69–73.

    Google Scholar 

  97. Robb RJ, Greene WC. Internalization of interleukin 2 is mediated by the beta chain of the high-affinity interleukin 2 receptor. J Exp Med 1987; 165:1201–1206.

    CAS  PubMed  Google Scholar 

  98. Robb RJ, Rusk CM, Yodoi J, Greene WC. Interleukin 2 binding molecule distinct from the Tac protein: analysis of its role in formation of high-affinity receptors. Proc Natl Acad Sci USA 1987; 84:2002–2006.

    CAS  PubMed  Google Scholar 

  99. Rocklin RE, Meyers OL, David JR. An in vitro assay for cellular hypersensitivity in man. J Immunol 1970; 104:95–102.

    CAS  PubMed  Google Scholar 

  100. Rosenberg SA, Eberlein TJ, Grimm EA, et al. Development of long-term cell lines and lymphoid clones reactive against murine and human tumors: a new approach to the adoptive immunotherapy of cancer. Surgery 1982; 92:328–336.

    CAS  PubMed  Google Scholar 

  101. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313:1485–1492.

    CAS  PubMed  Google Scholar 

  102. Rosenberg SA, Mule JJ. Immunotherapy of cancer with lymphokine-activated killer cells and recombinant interleukin-2. Surgery 1985; 98:437–444.

    CAS  PubMed  Google Scholar 

  103. Rosenberg SA, Mule JJ, Spiess PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985; 161:1169–1188.

    CAS  PubMed  Google Scholar 

  104. Rosenblum MG, Donato NJ. Tumor necrosis factor α: A multifaceted peptide hormone. CRC Crit Rev Immunol 1989; 9:21–44.

    CAS  Google Scholar 

  105. Schatten S, Granstein RD, Drebin JA, Greene MI. Suppressor T cells and the immune response to tumors. CRC Crit Rev Immunol 1984; 4:335–379.

    CAS  Google Scholar 

  106. Schwartz RH. T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex. Annu Rev Immunol 1985; 3:237–261.

    CAS  PubMed  Google Scholar 

  107. Seddiki N, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006; 203:1693–1700

    CAS  PubMed  Google Scholar 

  108. Shipp MA, Reinherz EL. Differential expression of nuclear proto-oncogenes in T cells triggered with mitogenic and non-mitogenic T3 and T11 activation signals. J Immunol 1987; 139:2143–2148.

    CAS  PubMed  Google Scholar 

  109. Sieff CA. Hematopoietic growth factors. J Clin Invest 1987; 79:1549–1557.

    CAS  PubMed  Google Scholar 

  110. Smith CW, Rothlein R, Hughes BJ, et al. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. J Clin Invest 1988; 82:1746–1756.

    CAS  PubMed  Google Scholar 

  111. Smith KA. Dissection of the molecular events occurring during T cell cycle progression. In: Gupta S, Paul WE, and Fauci AS, eds. Advances in experimental medicine and biology. New York: Plenum, 1986; 125–128.

    Google Scholar 

  112. Smith KA. The interleukin 2 receptor. Adv Immunol 1988; 42:165–179.

    CAS  PubMed  Google Scholar 

  113. Smith KA. Interleukin-2: inception, impact, and implications. Science 1988; 240:1169–1176.

    CAS  PubMed  Google Scholar 

  114. Spencer RP, Pearson HH. Radionuclide studies of the spleen. Cleveland: CRC Press, 1975.

    Google Scholar 

  115. Springer TA, Dustin ML, Kishimoto TK, Marlin SD. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol 1987; 5:223–252.

    CAS  PubMed  Google Scholar 

  116. Taniguchi T. Regulation of cytokine gene expression. Annu Rev Immunol 1988; 6:439–464.

    CAS  PubMed  Google Scholar 

  117. Te Velde AA, yard BA, Klomp JP, et al. Modulation of phenotypic and functional properties of human peripheral blood monocytes by interleukin-2 (IL-4). Agents Actions 1989; 26:199–200.

    CAS  PubMed  Google Scholar 

  118. Teshigawara K, Wang HM, Kato K, Smith KA. Interleukin 2 high-affinity receptor expression requires two distinct binding proteins. J Exp Med 1987; 165:223–238.

    CAS  PubMed  Google Scholar 

  119. Tosato G, Pike SE. Interferon-beta 2/interleukin 6 is a co-stimulant for human T lymphocytes. J Immunol 1988; 141: 1556–1562.

    CAS  PubMed  Google Scholar 

  120. Tracey DE. Macrophage mediated injury. In: Rose NR, Siegel B V, eds. The reticuloendothelial system: a comprehensive treatise. New York: Plenum, 1983; 77–101.

    Google Scholar 

  121. Trinchieri G, Perussa B. Human natural killer cells: biologic and pathologic aspects. Lab Invest 1984; 50:489–513.

    CAS  PubMed  Google Scholar 

  122. Tsudo M, Kozak RW, Goldman CK, Waldmann TA. Demonstration of a non-Tac peptide that binds interleukin 2: a potential participant in a multichain interleukin 2 receptor complex. Proc Natl Acad Sci USA 1986; 83:9694–9698.

    CAS  PubMed  Google Scholar 

  123. Unanue ER. Antigen-presenting function of the macrophage. Annu Rev Immunol 1984; 2:395–428.

    CAS  PubMed  Google Scholar 

  124. Wahl SM, McCartney-Francis N, Mergenhagen SE. Inflammatory and immunomodulatory roles of TGF-β. Immunol Today 1989; 10:258–261.

    CAS  PubMed  Google Scholar 

  125. Waldmann TA, Broder S. Suppressor cells in the regulation of the immune response. Prog Clin Immunol 1977; 3:155–199.

    CAS  PubMed  Google Scholar 

  126. Weiss A, Imboden JB. Cell surface molecules and early events involved in human T lymphocyte activation. Adv Immunol 1987; 41:1–38.

    CAS  PubMed  Google Scholar 

  127. West WH, Tauer KW, Yannelli JR, et al. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 1987; 316:898–905.

    CAS  PubMed  Google Scholar 

  128. Whitlock C, Denis K, Robertson D, Witte O. In vitro analysis of murine-B-cell development. Annu Rev Immunol 1985; 3:213–235.

    CAS  PubMed  Google Scholar 

  129. Woodruff JJ, Clarke LM, Chin YH. Specific cell-adhesion mechanisms determining migration pathways of recirculating lymphocytes. Annu Rev Immunol 1987; 5:201–222.

    CAS  PubMed  Google Scholar 

  130. Yang SC, Owen Schaub L, Grimm EA, Roth JA. Induction of lymphokine-activated killer cytotoxicity with interleukin-2 and tumor necrosis factor-alpha against primary lung cancer targets. Cancer Immunol Immunother 1989; 29:193–198.

    CAS  PubMed  Google Scholar 

  131. Young JD, Liu C. Multiple mechanisms of lymphocyte mediated killing. Immunol Today 1988; 9:140–144.

    CAS  PubMed  Google Scholar 

  132. Zlotnik A, Fischer M, Roehm N, Zipori D. Evidence for effects of interleukin 4 (B cell stimulatory factor 1) on macrophages: enhancement of antigen presenting ability of bone marrow-derived macrophages. J Immunol 1987; 138:4275–4279.

    CAS  PubMed  Google Scholar 

  133. Zola H. The surface antigens of human B lymphocytes. Immunol Today 1987; 8:308–310.

    CAS  Google Scholar 

  134. Zucali JR, Broxmeyer HE, Gross MA, Dinarello CA. Recombinant human tumor necrosis factors alpha and beta stimulate fibroblasts to produce hemopoietic growth factors in vitro. J Immunol 1988; 140:840–844.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Susana A. Serrate-Sztein (National Institutes of Health, Bethesda, Maryland) and Dr. Marcelo B. Sztein (University of Maryland School of Medicine, Baltimore, Maryland) contributed much of this chapter in the second edition, which was revised by the current author in the third, fourth, and fifth editions.

I would especially like to acknowledge the assistance of Dr. Richard S. Schulof, who co-authored this chapter in the second edition, but died in an accident during the preparation of the third edition.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Oldham, R.K. (2009). Current concepts in immunology. In: Oldham, R.K., Dillman, R.O. (eds) Principles of Cancer Biotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2289-9_5

Download citation

Publish with us

Policies and ethics