Skip to main content

Arrangements stable under the Coxeter groups

  • Conference paper
Book cover Configuration Spaces

Part of the book series: CRM Series ((CRMSNS))

Abstract

Let B be a real hyperplane arrangement which is stable under the action of a Coxeter group W. Then W acts naturally on the set of chambers of B. We assume that B is disjoint from the Coxeter arrangement A = A (W) of W. In this paper, we show that the W-orbits of the set of chambers of B are in one-to-one correspondence with the chambers of C = BB which are contained in an arbitrarily fixed chamber of A. From this fact, we find that the number of W-orbits of the set of chambers of B is given by the number of chambers of C divided by the order of W. We will also study the set of chambers of C which are contained in a chamber b of B. We prove that the cardinality of this set is equal to the order of the isotropy subgroup W b of b. We illustrate these results with some examples, and solve an open problem in [H. Kamiya, A. Takemura, H. Terao, Ranking patterns of unfolding models of codimension one, Adv. in Appl. Math. 47 (2011) 379–400] by using our results.

This work was partially supported by JSPS KAKENHI (22540134).

This research was supported by JST CREST.

This work was partially supported by JSPS KAKENHI (21340001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. A. Athanasiadis, “Algebraic Combinatorics of Graph Spectra, Subspace Arrangements and Tutte Polynomials”, Ph.D. thesis, MIT, 1996.

    Google Scholar 

  2. C. A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields, Adv. Math. 122 (1996) 193–233.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Bourbaki, “Groupes et Algebres de Lie”, Chapitres 4, 5 et 6, Hermann, Paris, 1968.

    Google Scholar 

  4. J. L. Chandon, J. Lemaire and J. Pouget, Dénombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines 62 (1978), 61–80.

    MATH  MathSciNet  Google Scholar 

  5. H. Crapo and G.-C. Rota, “On the Foundations of Combinatorial Theory: Combinatorial Geometries”, preliminary edition, MIT Press, Cambridge, MA, 1970.

    MATH  Google Scholar 

  6. R. A. Dean and G. Keller, Natural partial orders, Canad. J. Math. 20 (1968), 535–554.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Kamiya, P. Orlik, A. Takemura and H. Terao, Arrangements and ranking patterns, Ann. Comb. 10 (2006), 219–235.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Kamiya, A. Takemura and H. Terao, Periodicity of hyperplane arrangements with integral coefficients modulo positive integers, J. Algebraic Combin. 27 (2008) 317–330.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Kamiya, A. Takemura and H. Terao, The characteristic quasi-polynomials of the arrangements of root systems and mid-hyperplane arrangements, In: F. El Zein, A. I. Suciu, M. Tosun, A. M. Uludağ, S. Yuzvinsky, (Eds.), “Arrangements, Local Systems and Singularities”, CIMPA Summer School, Galatasaray University, Istanbul, 2007, Progress in Mathematics 283, Birkhäuser Verlag, Basel, 2009, pp. 177–190.

    Google Scholar 

  10. H. Kamiya, A. Takemura and H. Terao, Periodicity of non-central integral arrangements modulo positive integers, Ann. Comb. 15 (2011), 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Kamiya, A. Takemura and H. Terao, Ranking patterns of unfolding models of codimension one, Adv. in Appl. Math. 47 (2011), 379–400.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Kamiya, A. Takemura and N. Tokushige, Application of arrangement theory to unfolding models, In: “Arrangements of Hyperplanes (Sapporo 2009)”, H. Terao, S. Yuzvinsky (eds.), Proceedings of the Second MSJ-SI, Hokkaido University, Sapporo, 2009, Advanced Studies in Pure Math., 62, Math. Soc. of Japan, Tokyo, 2012, 399–415.

    Google Scholar 

  13. R. D. Luce, Semiorders and a theory of utility discrimination, Econometrica 24 (1956), 178–191.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. R. Mazur, Combinatorics: A Guided Tour, Mathematical Association of America, Washington, D.C., 2010.

    Google Scholar 

  15. P. Orlik and H. Terao, “Arrangements of Hyperplanes”, Springer-Verlag, Berlin, 1992.

    Book  Google Scholar 

  16. S. Ovchinnikov, Hyperplane arrangements in preference modeling, J. Math. Psych. 49 (2005), 481–488.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Ovchinnikov, “Graphs and Cubes”, Springer Science+Business Media, New York, NY, 2011.

    Google Scholar 

  18. A. Postnikov and R. P. Stanley, Deformations of Coxeter hyperplane arrangements, J. Combin. Theory Ser. A 91 (2000), 544–597.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Scott and P. Suppes, Foundational aspects of theories of measurement, J. Symbolic Logic 23 (1958), 113–128.

    Article  MathSciNet  Google Scholar 

  20. R. P. Stanley, “Enumerative Combinatorics”, Vol. 1, 2nd ed., Cambridge University Press, Cambridge, 2012.

    Google Scholar 

  21. R. P. Stanley, “Enumerative Combinatorics”, Vol. 2, Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  22. R. P. Stanley, An introduction to hyperplane arrangements, In: E. Miller, V. Reiner, B. Sturmfels, (Eds.), “Geometric Combinatorics, IAS/Park City Mathematics Series 13”, American Mathematical Society, Providence, RI, 2007, pp. 389–496.

    Google Scholar 

  23. R. L. Wine and J. E. Freund, On the enumeration of decision patterns involving n means, Ann. Math. Statist. 28 (1957), 256–259.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1, no. 154 (1975).

    Google Scholar 

Download references

Authors

Editor information

A. Bjorner F. Cohen C. De Concini C. Procesi M. Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Kamiya, H., Takemura, A., Terao, H. (2012). Arrangements stable under the Coxeter groups. In: Bjorner, A., Cohen, F., De Concini, C., Procesi, C., Salvetti, M. (eds) Configuration Spaces. CRM Series. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-431-1_15

Download citation

Publish with us

Policies and ethics