Skip to main content
  • 1303 Accesses

Abstract

The extraordinary advances in bone density technology since 1970s have enhanced the physician’s ability to detect and manage metabolic bone disease. In the last 25 years, due to an improvement in hardware and software of dual-energy X-ray absorptiometry (DXA), there has been increasing interest within the orthopaedic community in the noninvasive measurement of bone mineral mass and bone remodelling around metal joint prostheses in clinical practice and research. This interest has been stimulated, in part, by the recognition and understanding that the several diagnostic tools available in the clinical diagnosis of a failed arthroplasty are neither sensitive nor accurate for the diagnosis of early bone loss. Conventional X-ray imaging, although qualitatively indicating changes due to bone remodelling, has limited usefulness in quantitative evaluation of the amount of bone resorption. Using DXA technique, the amount of bone mass after joint stem implantation can be determined with high precision, minimal radiation exposure and negligible effects by metallic implants. This chapter summarizes the technical aspects and clinical applications of periprosthetic DXA in the two common and most currently well-accepted orthopaedic applications such as after total hip and total knee joints implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petersen MM, Lauritzen JB, Pedersen JG (1996) Decreased bone density of the distal femur after uncemented knee arthroplasty. A 1-year follow-up of 29 knees. Acta Orthop Scand 67(4):339–344

    Article  CAS  PubMed  Google Scholar 

  2. Kiratli BJ, Heiner JP, McBeath AA et al (1992) Determination of bone mineral density by dual X-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10:836–844

    Article  CAS  PubMed  Google Scholar 

  3. Kroger H, Venesmaa P, Jukka J et al (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop 352:66–74

    PubMed  Google Scholar 

  4. Levitz CL, Lotke PA, Karp JS (1995) Long-term changes in bone mineral density following total knee replacement. Clin Orthop 321:68–72

    PubMed  Google Scholar 

  5. Ostelere S, Soin S (2003) Imaging of prosthetic joints. Imaging 15:270–285

    Article  Google Scholar 

  6. Kohonen la I, Koivu K, Pudas T et al (2013) Does computed tomography add information on radiographic analysis in detecting periprosthetic osteolysis after total ankle arthroplasty? Foot Ankle Int 34:180–188

    Article  Google Scholar 

  7. Schmidt R, Nowak TE, Mueller L et al (2004) Osteodensitometry after total hip replacement with uncemented taper-design stem. Int Orthop 28:74–77

    Article  PubMed Central  PubMed  Google Scholar 

  8. Schmidt R, Mueller L, Nowak TE et al (2003) Clinical outcome and periprosthetic bone remodelling of an uncemented femoral component with taper design. Int Orthop 27:204–207

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kim YH (2002) Cementless total hip arthroplasty with a close proximal fit and short tapered distal stem (third generation) prosthesis. J Arthroplasty 17(7):841–850

    Article  PubMed  Google Scholar 

  10. Engh CA, McAuley JP, Sychterz CJ et al (2000) Accuracy and reproducibility of radiographic assessment of stress-shielding-a post-mortemanalysis. J Bone Joint Surg (Am) 82A:1414–1420

    Google Scholar 

  11. Trevisan C, Bigoni M, Cherubini R et al (1993) Dual X-ray absorptiometry for the evaluation of bone density from the proximal femur after total hip arthroplasty: analysis protocols and reproducibility. Calcif Tissue Int 53:158–161

    Article  CAS  PubMed  Google Scholar 

  12. Aldinger PR, Sabo D et al (2003) Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA. Calcif Tissue Int 73:115–121

    Article  CAS  PubMed  Google Scholar 

  13. Brodner W, Bitzan P, Lomoschitz P et al (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study. J Bone Joint Surg (Br) 86:20–26

    Google Scholar 

  14. Stilling M, Mechlenburg I, Amstrup A et al (2012) Precision of novel radiological methods in relation to resurfacing humeral head implants: assessment by radiostereometric analysis, DXA, and geometrical analysis. Arch Orthop Trauma Surg 132(11):1521–1530

    Article  PubMed  Google Scholar 

  15. Tan JS, Kayanja MM, St Clair SF (2010) The difference in spine specimen dual-energy X-ray absorptiometry bone mineral density between in situ and in vitro scans. Spine J 10(9):784–788

    Article  PubMed  Google Scholar 

  16. Kroger H, Miettinen H, Arnala I et al (1996) Evaluation of periprosthetic bone using dual-energy X-ray absorptiometry. Precision of the method and effect of operation on bone mineral density. J Bone Miner Res 11:1526–1530

    Article  CAS  PubMed  Google Scholar 

  17. Kilgus DJ, Shimaoka EE, Tipton JS et al (1993) Dual-energy X-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants. Methods and preliminary results. J Bone Joint Surg 75B:279–287

    Google Scholar 

  18. Kiratly BJ, Checovic MM, McBeath AA et al (1996) Measurement of bone mineral density by dual-energy X-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem. J Arthroplasty 2:184–193

    Article  Google Scholar 

  19. Gruen TA, McNeice GM, Amstutz HC (1979) Modes of failure of cemented stem-type femoral components. Clin Orthop 141:17–27

    PubMed  Google Scholar 

  20. Albanese CV, Santori FS et al (2009) Periprosthetic DXA after total hip arthroplasty with short vs. ultrashort custom-made femoral stems: 37 patients followed for 3 years. Acta Orthop 80(3):291–297

    Google Scholar 

  21. Wilkinson JM, Peel NFA, Elson RA et al (2001) Measuring bone mineral density of the pelvis and proximal femur after total hip arthroplasty. J bone J Surg (Br) 83-B:283–288

    Google Scholar 

  22. Stilling M, SØballe K, Larsen K et al (2010) Knee flexion influences periprosthetic BMD measurement in the tibia. Suggestions for a reproducible clinical scan protocol. Acta Orthop 81(4):463–470

    Article  PubMed Central  PubMed  Google Scholar 

  23. Li MG, Nilsson KG, Nivbrant B (2004) Decreased precision for BMD measurements in the prosthetic knee using a non-knee specific software. J Clin Densitom 7(3):319–325

    Article  PubMed  Google Scholar 

  24. Cohen B, Rushton N (1995) Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J Bone Joint Surg (Br) 77-B:479–483

    Google Scholar 

  25. Shetty NR, Hamer AJ, Stockley I et al (2006) Precision of periprosthetic bone mineral density measurements using Hologic windows versus Dosbased analysis software. J Clin Densitom 9(3):363–366

    Article  PubMed  Google Scholar 

  26. Engh CA, McGovern TF, Bobyn JD et al (1992) A quantitative evaluation of periprosthetic bone remodeling after cementless total hip arthroplasty. J Bone Joint Surg Am 74:1009–1020

    CAS  PubMed  Google Scholar 

  27. Lee RW, Volz RG, Sheridan DC (1991) The role of fixation and bone quality on the mechanical stability of the tibial components. Clin Orthop 273:177–189

    PubMed  Google Scholar 

  28. Venesmaa PK, Kroger HP, Jurvelin JS et al (2003) Periprosthetic bone loss after cemented total hip arthroplasty. Acta Orthop Scand 74(1):31–36

    Article  PubMed  Google Scholar 

  29. Huiskes R (1990) The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop 261:27–38

    PubMed  Google Scholar 

  30. Thomas BJ, Salvati EA, Small RD (1986) The CAD hip arthroplasty: five to ten year follow-up. J Bone Surg 68-A:640–651

    Google Scholar 

  31. Lord J, Marotte JH, Guillamon JL, Blanchard JP (1988) Cementless revisions of failed aseptic cemented and cementless total arthroplasties: 284 cases. Clin Orthop 235:67–74

    PubMed  Google Scholar 

  32. Stulgerg BN, Bauer TW, Watson JT et al (1989) Bone quality: roentgenographic versus histologic assessment of hip structure. Clin Orthop 240:200–205

    Google Scholar 

  33. Albanese CV, Rendine M, De Palma F et al (2006) Bone remodelling in THR: a comparative multicentre DXA scan study between conventional implants and a new stemless femoral component. Hip Int 16(S-3):S9–S15

    Google Scholar 

  34. Santori N, Lucidi M, Santori FS (2006) Proximal load transfer with a stemless uncemented femoral implant. J Orthop Traumatol 7:154–160

    Article  Google Scholar 

  35. Santori N, Albanese CV, Learmonth ID et al (2006) Bone preservation with a conservative methaphyseal loading implant. Hip Int 16(S-3):S16–S21

    Google Scholar 

  36. Logroscino G, Ciriello V, D’Antonio E et al (2011) Bone integration of new stemless hip implants (Proxima vs Nanos). A DXA study: preliminary results. Int J Imm Pharm 24(1-S2):113–116

    Google Scholar 

  37. Lazarinis S, Mattsson P, Milbrink J et al (2013) A prospective cohort study on the short collum femoris preserving (CFP) stem using RSA and DXA. Primary stability but no prevention of proximal bone loss in 27 patients followed for 2 years. Acta Orthop 84(1):32–39

    Article  PubMed Central  PubMed  Google Scholar 

  38. Li MG, Rohrl SM, Wood DJ et al (2007) Periprosthetic changes in bone mineral density in 5 stem designs 5 years after cemented total hip arthroplasty. No relation stem migration. J Arthoplasty 22(5):689–691

    Article  Google Scholar 

  39. Mattsson OW, milbrink J, Larsson S et al (2010) Periprosthetic bone mineral density and fixation of the uncemented CLS stem related to different weight bearing regimes. Acta Orthop 81(3):286–291

    Article  PubMed Central  PubMed  Google Scholar 

  40. Nysted M, Benum P, Klaksvik et al (2011) Periprosthetic bone loss after insertion of an uncemented, customized femoral stem and an uncemented anatomical stem. A randomized DXA study with 5-year follow-up. Acta Orthop 82(4):410–416

    Google Scholar 

  41. Seitz P, Ruegsegger P, Gschwend N et al (1987) Changes in local bone density after knee arthroplasty. J Bone Joint Surg Br 69:407–411

    CAS  PubMed  Google Scholar 

  42. Robertson DD, Minzer CM, Weissman BN et al (1994) Distal loss of femoral bone following total knee arthroplasty. J Bone Joint Surg Am 76:66–76

    CAS  PubMed  Google Scholar 

  43. Trevisan C, Bigoni M, Denti M et al (1998) Bone assessment after total knee arthroplasty by dual energy X-ray absorptiometry: analysis protocol and reproducibility. Calcif Tissue Int 62(4):359–361

    Article  CAS  PubMed  Google Scholar 

  44. Therbo M, Petersen MM, Schroder HM et al (2003) The precision and influence of rotation for measurements of bone mineral density of the distal femur following total knee arthroplasty: a methodological study using DEXA. Acta Orthop Scand 74(6):677–682

    Article  PubMed  Google Scholar 

  45. Spittlehouse AJ, Getty CJ, Eastell R (1999) Measurement of bone mineral density by dualenergy X-ray absorptiometry around an uncemented knee prosthesis. J Arthroplasty 14(8):957–963

    Article  CAS  PubMed  Google Scholar 

  46. Li MG, Nilsson KG, Nivbrant B (2004) Decreased precision for BMD measurements in the prosthetic knee using a non-knee-specific software. J Clin Densitom 7(3):319–325

    Article  PubMed  Google Scholar 

  47. Tjørnild M, Søballe K, Bender T et al (2011) Reproducibility of BMD measurements in the prosthetic knee comparing knee-specific software to traditional DXA software: a clinical validation. J Clin Densitometry 14(2):138–148

    Article  Google Scholar 

  48. Soininvaara TA, Miettinen HJ, Jurvelin JS (2004) Periprosthetic tibial bone mineral density changes after total knee arthroplasty: one-year follow-up study of 69 patients. Acta Orthop Scand 75(5):600–605

    Article  PubMed  Google Scholar 

  49. Soininvaara T, Kröger H, Jurvelin JS et al (2000) Measurement of bone density around total knee arthroplasty using fan-beam dual energy X-ray absorptiometry. Calcif Tissue Int 67(3):267–272

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlina V. Albanese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Albanese, C.V. (2014). Periprosthetic DXA. In: Albanese, C.V., Faletti, C. (eds) Imaging of Prosthetic Joints. Springer, Milano. https://doi.org/10.1007/978-88-470-5483-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5483-7_8

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5482-0

  • Online ISBN: 978-88-470-5483-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics