Skip to main content

Bone Remodeling

  • Chapter

Abstract

Skeletal buildup and maintenance is ensured by modeling and remodeling processes. Bone modeling works mainly during organism growth and is characterized by bone formation prevailing on resorption: The two processes are carried out simultaneously but not at the same location. In the bone remodeling, occurring throughout the life, osteoclasts remove the old bone, and osteoblasts replace it with the equal amount at the same site. The control of bone modeling and remodeling is very complex and involves both mechanical forces and biological factors. These include either circulating hormones, such as growth hormone, estrogen, androgen, PTH, and locally produced factors, such as Wnt signaling molecules and bone morphogenetic proteins. This chapter describes the sequential phases of bone remodeling as well as the last knowledge about its regulation by mechanical loading, circulating, and locally produced molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Seeman E (2009) Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:219–233

    Article  CAS  PubMed  Google Scholar 

  2. Hauge EM, Qvesel D, Eriksen EF et al (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582

    Article  CAS  PubMed  Google Scholar 

  3. Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15:60–67

    Article  CAS  PubMed  Google Scholar 

  4. Heino TJ, Hentunen TA, Väänänen HK (2002) Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 85:185–197

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Qin L, Bergenstock M et al (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–33106

    Article  CAS  PubMed  Google Scholar 

  6. Ma YL, Cain RL, Halladay DL et al (2001) Catabolic effects of continuous human PTH (1-38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology 142:4047–4054

    CAS  PubMed  Google Scholar 

  7. Nakamura T, Imai Y, Matsumoto T et al (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811–823

    Article  CAS  PubMed  Google Scholar 

  8. Everts V, Delaissé JM, Korper W et al (2002) The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. J Bone Miner Res 17:77–90

    Article  CAS  PubMed  Google Scholar 

  9. Baron R (2008) Anatomy and ultrastructure of bone—histogenesis, growth and remodeling. In: Singer F (ed) Diseases of bone and mineral metabolism. Publisher: Endotext.com http://www.endotext.org/parathyroid/parathyroid1/parathyroid1.html

  10. Henriksen K, Neutzsky-Wulff AV, Bonewald LF et al (2009) Local communication on and within bone controls bone remodeling. Bone 44:1026–1033

    Article  PubMed  Google Scholar 

  11. Robling AG, Niziolek PJ, Baldridge LA et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  CAS  PubMed  Google Scholar 

  12. Clarke BL, Khosla S (2010) Physiology of bone loss. Radiol Clin North Am 48:483–495

    Article  PubMed Central  PubMed  Google Scholar 

  13. Eriksen EF, Kassem M, Langdahl B (1996) Growth hormone, insulin-like growth factors and bone remodelling. Eur J Clin Invest 26:525–534

    Article  CAS  PubMed  Google Scholar 

  14. Kassem M, Blum W, Ristelli J et al (1993) Growth hormone stimulates proliferation and differentiation of normal human osteoblast-like cells in vitro. Calcif Tissue Int 52:222–226

    Article  CAS  PubMed  Google Scholar 

  15. Ernst M, Froesch ER (1988) Growth hormone dependent stimulation of osteoblast-like cells in serum-free cultures via local synthesis of insulin-like growth factor I. Biochem Biophys Res Commun 151:142–147

    Article  CAS  PubMed  Google Scholar 

  16. Guicheux J, Heymann D, Rousselle AV et al (1998) Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin-like growth factor I: an in vitro study. Bone 22:25–31

    Article  CAS  PubMed  Google Scholar 

  17. Hou P, Sato T, Hofstetter W et al (1997) Identification and characterization of the insulin-like growth factor I receptor in mature rabbit osteoclasts. J Bone Miner Res 12:534–540

    Article  CAS  PubMed  Google Scholar 

  18. Rubin J, Ackert-Bicknell CL, Zhu L et al (2002) IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. J Clin Endocrinol Metab 87:4273–4279

    Article  CAS  PubMed  Google Scholar 

  19. Seeman E (2001) Clinical review 137: sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584

    Article  CAS  PubMed  Google Scholar 

  20. Tomkinson A, Reeve J, Shaw RW et al (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82:3128–3135

    CAS  PubMed  Google Scholar 

  21. Mirza FS, Padhi ID, Raisz LG et al (2010) Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 95:1991–1997

    Article  PubMed Central  PubMed  Google Scholar 

  22. Khosla S (2010) Update on estrogens and the skeleton. J Clin Endo Metab 95:3569–3577

    Article  CAS  Google Scholar 

  23. Eghbali-Fatourechi G, Khosla S, Sanyal A et al (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Clowes JA, Riggs BL, Khosla S (2005) The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev 208:207–227

    Article  CAS  PubMed  Google Scholar 

  25. Hofbauer LC, Khosla S, Dunstan CR et al (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. J Clin Endocrinol Metab 140:4367–4370

    CAS  Google Scholar 

  26. Oursler MJ, Cortese C, Keeting PE et al (1991) Modulation of transforming growth factor-beta production in normal human osteoblast-like cells by 17 beta-estradiol and parathyroid hormone. Endocrinol 129:3313–3320

    Article  CAS  Google Scholar 

  27. Hughes DE, Dai A, Tiffee JC et al (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136

    Article  CAS  PubMed  Google Scholar 

  28. Shevde NK, Bendixon AC, Dienger KM et al (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA 97:7829–7834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gregorio GB, Yamamoto M, Ali AA et al (2001) Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17beta-estradiol. J Clin Invest 107:803–812

    Article  PubMed Central  PubMed  Google Scholar 

  30. Okazaki R, Inoue D, Shibata M et al (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor alpha or beta. Endocrinology 143:2349–2356

    CAS  PubMed  Google Scholar 

  31. Colaianni G, Di Benedetto A, Zhu LL et al (2011) Regulated production of the pituitary hormone oxytocin from murine and human osteoblasts. Biochem Biophys Res Commun 411:512–515

    Article  CAS  PubMed  Google Scholar 

  32. Vanderschueren D, Vandenput L, Boonen S et al (2004) Androgens and bone. Endocr Rev 25:89–425

    Google Scholar 

  33. Bodine PV, Riggs BL, Spelsberg TC (1995) Regulation of c-fos expression and TGF-beta production by gonadal and adrenal androgens in normal human osteoblastic cells. J Steroid Biochem Mol Biol 52:149–158

    Article  CAS  PubMed  Google Scholar 

  34. Kasperk CH, Wergedal JE, Farley JR et al (1989) Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 124:1576–1578

    Article  CAS  PubMed  Google Scholar 

  35. Michael H, Härkönen PL, Väänänen HK et al (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 20:2224–2232

    Article  CAS  PubMed  Google Scholar 

  36. Sun L, Peng Y, Sharrow AC et al (2006) FSH directly regulates bone mass. Cell 125:247–260

    Article  CAS  PubMed  Google Scholar 

  37. Cannon JG, Cortez-Cooper M, Meaders E et al (2010) Follicle-stimulating hormone, interleukin-1, and bone density in adult women. Am J Physiol Regul Integr Comp Physiol 298:R790–R798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Iqbal J, Sun L, Kumar TR et al (2006) Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc Natl Acad Sci USA 103:14925–14930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Dempster DW, Hughes-Begos CE, Plavetic-Chee K et al (2005) Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts. J Cell Biochem 95:139–148

    Article  CAS  PubMed  Google Scholar 

  40. Bikle DD, Wang Y (2012) Insulin like growth factor-I: a critical mediator of the skeletal response to parathyroid hormone. Curr Mol Pharmacol 5:135-142

    Google Scholar 

  41. Rickard DJ, Wang FL, Rodriguez-Rojas AM et al (2006) Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone 39:1361–1372

    Article  CAS  PubMed  Google Scholar 

  42. Bellido T, Ali AA, Gubrij I et al (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583

    Article  CAS  PubMed  Google Scholar 

  43. Gao Y, Wu X, Terauchi M et al (2008) T cells potentiate PTH-induced cortical bone loss through CD40L signalling. Cell Metab 8:132–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614

    Article  CAS  PubMed  Google Scholar 

  45. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ et al (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728

    Article  CAS  PubMed  Google Scholar 

  46. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Case N, Rubin J (2010) β-catenin a supporting role in the skeleton. J Cell Biochem 110:545–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Glass DA 2nd, Bialek P, Ahn JD et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8(5):751–764

    Article  CAS  PubMed  Google Scholar 

  49. Pinzone JJ, Hall BM, Thudi NK, Vonau M et al (2009) The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 113:517–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Moester MJ, Papapoulos SE, Löwik CW et al (2010) Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 87:99–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lin C, Jiang X, Dai Z et al (2009) Sclerostin mediates bone response to mechanical unloading via antagonizing Wnt/β-catenin signaling. J Bone Miner Res 24:1651–1661

    Article  CAS  PubMed  Google Scholar 

  52. Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235

    Article  CAS  PubMed  Google Scholar 

  53. Bandyopadhyay A, Tsuji K, Cox K et al (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kamiya N, Ye L, Kobayashi T, Mochida Y et al (2008) BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 135:3801–3811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Noble BS, Peet N, Stevens HY et al (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–C943

    Article  CAS  PubMed  Google Scholar 

  56. Chow JW, Wilson AJ, Chambers TJ et al (1998) Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats. J Bone Miner Res 13:1760–1767

    Article  CAS  PubMed  Google Scholar 

  57. Forwood MR, Owan I, Takano Y et al (1996) Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo. Am J Physiol Endocrinol Metab 270:E419–E423

    CAS  Google Scholar 

  58. Noble BS, Reeve J (2000) Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol 159:7–13

    Article  CAS  PubMed  Google Scholar 

  59. Pavalko FM, Gerard RL, Ponik SM et al (2003) Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J Cell Physiol 194:194–205

    Article  CAS  PubMed  Google Scholar 

  60. Reich KM, Gay CV, Frangos JA (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J Cell Physiol 143:100–104

    Article  CAS  PubMed  Google Scholar 

  61. You J, Yellowley CE, Donahue HJ et al (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading induced oscillating fluid flow. J Biomech Eng 122:387–393

    Article  CAS  PubMed  Google Scholar 

  62. Vatsa A, Breuls RG, Semeins CM et al (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43:452–458

    Article  PubMed  Google Scholar 

  63. Wang Y, McNamara LM, Schaffler MB et al (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA 104:15846–15941

    Google Scholar 

  64. Klein-Nulend J, Burger EH, Semeins CM et al (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 12:45–51

    Article  CAS  PubMed  Google Scholar 

  65. Rubin J, Murphy T, Nanes MS et al (2000) Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am J Physiol Cell Physiol 278:C1126–C1132

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomina Brunetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Brunetti, G., Di Benedetto, A., Mori, G. (2014). Bone Remodeling. In: Albanese, C.V., Faletti, C. (eds) Imaging of Prosthetic Joints. Springer, Milano. https://doi.org/10.1007/978-88-470-5483-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5483-7_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5482-0

  • Online ISBN: 978-88-470-5483-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics