Skip to main content

Left Ventricular Rest and Unloading During VA ECMO

  • Chapter
  • First Online:

Abstract

Mechanical supports, such as ECMO, are aimed mostly to ensure organ perfusion during profound cardiogenic shock, but also adequate left ventricle (LV) rest, allowing recovery of stunned myocardium and relieving shear stress from the newly necrotic area. For a combination of severe myocardial dysfunction and the adjunctive afterload, due to retrograde flow from the arterial cannula and inadequate RV drainage and bronchial circulation, LV end-diastolic, left atrium, and pulmonary pressure could dangerously rise, causing progressive dilatation of the LV, remodeling and worse systolic performance, increased wall stress, and myocardial oxygen consumption. It is mandatory, therefore, to establish adequate LV decompression, to improve symptoms, such as pulmonary edema, hemoptysis, and pulmonary hemorrhages potentially leading to irreversible pulmonary failure. This goal may be achieved by means of optimal medical treatment (combination and careful titration of inotropes and vasopressors) and by mechanical decompression (IABP, different venting strategies, impeller axial pumps).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Braunwald E, Rutherford JD (1986) Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol 8:146

    Article  Google Scholar 

  2. Rahimtoola SH et al (1993) The hibernating myocardium in ischaemia and congestive heart failure. Eur Heart J 14(Suppl A):22–26

    Article  PubMed  Google Scholar 

  3. Ito H, Tomooka T, Sakai N (1993) Time-course of functional improvement in stunned myocardium in risk area in patients with reperfused anterior infarction. Circulation 87:355–362

    Article  CAS  PubMed  Google Scholar 

  4. Bolli R (1992) Myocardial “stunning” in man. Circulation 86:1671–1691

    Article  CAS  PubMed  Google Scholar 

  5. Zia A, Kern B (2011) Management of postcardiac arrest myocardial dysfunction. Curr Opin Crit Care 17:241–246

    Article  PubMed  Google Scholar 

  6. Gazmuri RJ, Weil MH, Bisera J (1996) Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 24:992–1000

    Article  CAS  PubMed  Google Scholar 

  7. Laurent I, Monchi M, Chiche JD et al (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 40:2110–2116

    Article  PubMed  Google Scholar 

  8. Peatfield RC, Sillet RW, Taylor D (1977) Survival after cardiac arrest in the hospital. Lancet 1:1223–1225

    Article  CAS  PubMed  Google Scholar 

  9. Deantonio HJ, Kaul S, Lerman BB (1990) Reversible myocardial depression in survivors of cardiac arrest. Pacing Clin Electrophysiol 13:982–985

    Article  CAS  PubMed  Google Scholar 

  10. Kern KB et al (1996) Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol 28(1):232–240

    Article  CAS  PubMed  Google Scholar 

  11. Ross J Jr (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083

    Article  PubMed  Google Scholar 

  12. Gallagher KP (1995) Myocardial hibernation in terms of the flow-function relationship. Basic Res Cardiol 90:12–15

    CAS  PubMed  Google Scholar 

  13. Braunwald E (1986) Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol 8:1467–1470

    Article  CAS  PubMed  Google Scholar 

  14. Schinkel AF, Bax JJ, Delgado V (2010) Clinical relevance of hibernating myocardium in ischemic left ventricular dysfunction. Am J Med 123:978–986

    Article  PubMed  Google Scholar 

  15. Heusch G, Schulz R, Rahimtoola SH (2005) A myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288(3):H984–H999

    Article  CAS  PubMed  Google Scholar 

  16. Burch GE, McDonald CD (1971) Prolonged bed rest in treatment of ischemic cardiomyopathy. Chest 60(5):424–430

    Article  CAS  PubMed  Google Scholar 

  17. Hummel M (1994) Interleukin-6 and interleukin-8 concentrations as predictors of outcome in ventricular assist device patients before heart transplantation. Crit Care Med 22:448–454

    Article  CAS  PubMed  Google Scholar 

  18. Hosenpud JD (1989) Interleukin-1 induced myocardial depression in an isolated perfused beating heart preparation. Heart Transplant 8:460–464

    CAS  Google Scholar 

  19. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  CAS  PubMed  Google Scholar 

  20. Hetzer R et al (1999) Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg 68:742–749

    Article  CAS  PubMed  Google Scholar 

  21. Klotz S, Foronjy RF, Dickstein ML (2005) Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 11:364–374

    Article  Google Scholar 

  22. Drakos SG, Kfoury AG, Hammond EH et al (2010) Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol 56:382–391

    Article  PubMed Central  PubMed  Google Scholar 

  23. Cohn JN (1986) Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med 314:1547–1552

    Article  CAS  PubMed  Google Scholar 

  24. Scheinin SA (1992) The effect of prolonged left ventricular support on myocardial histopathology in patients with end- stage cardiomyopathy. ASAIO J 38:M271–M274

    Article  CAS  PubMed  Google Scholar 

  25. Kinoshita M (1996) Influence of prolonged ventricular assistance on myocardial histopathology in intact heart. Ann Thorac Surg 61:640–645

    Article  CAS  PubMed  Google Scholar 

  26. Gerdes AM (2002) Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail 8:S24–S268

    Article  Google Scholar 

  27. Kushner FG, Hand M, Smith SC Jr et al (2009) 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 54:2205–2241

    Article  PubMed  Google Scholar 

  28. Steg G, James SK, Atar D et al (2012) ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33(20):2569–2619

    Article  CAS  PubMed  Google Scholar 

  29. Santa-Cruz RA, Cohen MG, Ohman EM (2006) Aortic counterpulsation: a review of the hemodynamic effects and indications for use. Catheter Cardiovasc Interv 67:68–77

    Article  PubMed  Google Scholar 

  30. Ferguson JJ 3rd, Cohen M, Freedman RJ Jr et al (2001) The current practice of intra-aortic balloon counterpulsation: results from the Benchmark Registry. J Am Coll Cardiol 38:1456–1462

    Article  PubMed  Google Scholar 

  31. Weber KT, Janicki JS (1974) Intraaortic balloon counterpulsation. A review of physiological principles, clinical results, and device safety. Ann Thorac Surg 17:602–636

    Article  CAS  PubMed  Google Scholar 

  32. Marchionni N, Fumagalli S, Baldereschi G et al (1998) Effective arterial elastance and the hemodynamic effects of intraaortic balloon counterpulsation in patients with coronary heart disease. Am Heart J 135:855–861

    Article  CAS  PubMed  Google Scholar 

  33. Port SC, Patel S, Schmidt DH (1984) Effects of intraaortic balloon counterpulsation on myocardial blood flow in patients with severe coronary artery disease. J Am Coll Cardiol 3:1367–1374

    Article  CAS  PubMed  Google Scholar 

  34. Williams DO, Korr KS, Gewirtz H, Most AS (1982) The effect of intraaortic balloon counterpulsation on regional myocardial blood flow and oxygen consumption in the presence of coronary artery stenosis in patients with unstable angina. Circulation 66:593–597

    Article  CAS  PubMed  Google Scholar 

  35. Mueller H, Ayres SM, Conklin EF et al (1971) The effects of intra-aortic counterpulsation on cardiac performance and metabolism in shock associated with acute myocardial infarction. J Clin Invest 50:1885–1900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kern MJ, Aguirre FV, Tatineni S et al (1993) Enhanced coronary blood flow velocity during intraaortic balloon counterpulsation in critically ill patients. J Am Coll Cardiol 21:359–368

    Article  CAS  PubMed  Google Scholar 

  37. Kern MJ, Aguirre F, Bach R et al (1993) Augmentation of coronary blood flow by intra-aortic balloon pumping in patients after coronary angioplasty. Circulation 87:500–511

    Article  CAS  PubMed  Google Scholar 

  38. Urschel CW, Eber L, Forrester J et al (1970) Alteration of mechanical performance of the ventricle by intraaortic balloon counterpulsation. Am J Cardiol 25:546–551

    Article  CAS  PubMed  Google Scholar 

  39. Phillips SJ, Zeff RH, Kongtahworn C et al (1992) Benefits of combined balloon pumping and percutaneous cardiopulmonary bypass. Ann Thorac Surg 54:908–910

    Article  CAS  PubMed  Google Scholar 

  40. Lazar HL, Treanor P, Yang M et al (1994) Enhanced recovery of ischemic myocardium by combining percutaneous bypass with intraaortic balloon pump support. Ann Thorac Surg 57:663–668

    Article  CAS  PubMed  Google Scholar 

  41. O’Neil MP, Fleming JC, Badhwar A et al (2012) Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects. Ann Thorac Surg 94:2046–2053

    Article  PubMed  Google Scholar 

  42. Koenig P, Ralston M, Kimball T, Meyer R, Daniels S, Schwartz D (1993) Balloon atrial septostomy for left ventricular decompression in patients receiving extracorporeal membrane oxygenation for myocardial failure. J Pediatr 122:S95–S99

    Article  CAS  PubMed  Google Scholar 

  43. Johnston TA, Jaggers J, McGovern JJ et al (1999) Bedside transseptal balloon dilation atrial septostomy for decompression of the left heart during extracorporeal membrane oxygenation. Catheter Cardiovasc Interv 46:197–199

    Article  CAS  PubMed  Google Scholar 

  44. Ward KE, Tuggle DW, Gessouroun MR et al (1995) Transseptal decompression of the left heart during ECMO for severe myocarditis. Ann Thorac Surg 59:749–751

    Article  CAS  PubMed  Google Scholar 

  45. Aiyagari RM, Rocchini AP, Remenapp RT et al (2006) Decompression of the left atrium during extracorporeal membrane oxygenation using a transseptal cannula incorporated into the circuit. Crit Care Med 34:2603–2606

    Article  PubMed  Google Scholar 

  46. Veldtman GR, Norgard G, Wåhlander H et al (2005) Creation and enlargement of atrial defects in congenital heart disease. Pediatr Cardiol 26:162–168

    Article  CAS  PubMed  Google Scholar 

  47. Swartz MF, Smith F, Byrum CJ et al (2012) Transseptal catheter decompression of the left ventricle during extracorporeal membrane oxygenation. Pediatr Cardiol 33:185–187

    Article  PubMed  Google Scholar 

  48. Kolobow T, Rossi F, Borelli M, Foti G (1988) Long-term closed chest partial and total cardiopulmonary bypass by peripheral cannulation for severe right and/or left ventricular failure, including ventricular fibrillation. The use of a percutaneous spring in the pulmonary artery position to decompress the left heart. ASAIO Trans 34:485–489

    CAS  PubMed  Google Scholar 

  49. Avalli L, Maggioni E, Sangalli F et al (2011) Percutaneous left-heart decompression during extracorporeal membrane oxygenation: an alternative to surgical and transeptal venting in adult patients. ASAIO J 57:38–40

    Article  CAS  PubMed  Google Scholar 

  50. Fumagalli R, Bombino M, Borelli M et al (2004) Percutaneous bridge to heart transplantation by venoarterial ECMO and transaortic left ventricular venting. Int J Artif Organs 27(5):410–413

    CAS  PubMed  Google Scholar 

  51. Kitamura M, Hanzawa K, Takekubo M et al (2004) Preclinical assessment of a transaortic venting catheter for percutaneous cardiopulmonary support. Artif Organs 28(3):298–302

    Article  PubMed  Google Scholar 

  52. Morishita A, Kitamura M, Shibuya M et al (1999) Effectiveness of transaortic venting from a failing left ventricle during venoarterial bypass. ASAIO J 45(1):69–73

    Article  CAS  PubMed  Google Scholar 

  53. Chaparro SV, Badheka AA, Marzouka GR et al (2012) Combined use of Impella left ventricular assist device and extracorporeal membrane oxygenation as a bridge to recovery in fulminant myocarditis. ASAIO J 58(3):285–287

    Article  PubMed  Google Scholar 

  54. Beurtheret S, Mordant P, Pavie A et al (2012) Impella and extracorporeal membrane oxygenation: a demanding combination. ASAIO J 58:291–293

    Article  PubMed  Google Scholar 

  55. Koeckert MS, Jorde UP, Naka Y et al (2011) Impella LP 2.5 for left ventricular unloading during venoarterial extracorporeal membrane oxygenation support. J Card Surg 26(6):666–668

    Article  PubMed  Google Scholar 

  56. Vlasselaers D, Desmet M, Desmet L et al (2006) Ventricular unloading with a miniature axial flow pump in combination with extracorporeal membrane oxygenation. Intensive Care Med 32(2):329–333

    Article  PubMed  Google Scholar 

  57. Luyt CE, Landivier A, Leprince P et al (2012) Usefulness of cardiac biomarkers to predict cardiac recovery in patients on extracorporeal membrane oxygenation support for refractory cardiogenic shock. J Crit Care 27(5):524.e7–524.e14

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Greco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Greco, G., Cortinovis, B., Avalli, L. (2014). Left Ventricular Rest and Unloading During VA ECMO. In: Sangalli, F., Patroniti, N., Pesenti, A. (eds) ECMO-Extracorporeal Life Support in Adults. Springer, Milano. https://doi.org/10.1007/978-88-470-5427-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5427-1_17

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5426-4

  • Online ISBN: 978-88-470-5427-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics