Skip to main content

Basic Science and Injury in Growing Athletes: Muscle, Tendon, and Ligament

  • Chapter
  • First Online:
  • 1271 Accesses

Abstract

Physical activity and sports nowadays constitute one of the foundations for a correct psychophysical development, both in children and adolescents. It has been accounted that about 30 million children across the United States participate in organized athletic activities, and this number is increasing; the same increasing trend has been recently reported in Europe by the Olympic Committees. Even though, on the one hand, these activities lead to lifelong habits of exercising and teamwork value, on the other hand, as the competition and the technical complexity of exercises increases, training, and workout become longer and more intense with shorter rest periods. The accumulation of repetitive stress without adequate recovery time along with skeletal immaturity can cause many soft tissue injuries. In particular, sports injuries are responsible for nearly a quarter of all injuries in children and adolescents. The aim of this chapter is to provide a report on epidemiology, risk factors and basic science in soft tissue injuries (muscles, tendons, and ligaments), from trauma to recovery, involving the young “growing” athlete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gigante A, Del Torto M, Manzotti S et al (2012) Platelet rich fibrin matrix effects on skeletal muscle lesions: an experimental study. J Biol Regul Homeost Agents 26:475–484

    Google Scholar 

  2. Fujii K, Tanzer ML (1974) Age-related changes in the reducible crosslinks of human tendon collagen. FEBS Lett 43:300–302

    Google Scholar 

  3. Amiel D, Kuiper SD, Wallace CD et al (1991) Age-related properties of medial collateral ligament and anterior cruciate ligament: a morphologic and collagen maturation study in the rabbit. J Gerontol 46:B159–165

    Google Scholar 

  4. Kovanen V, Suominen H (1989) Age- and training-related changes in the collagen metabolism of rat skeletal muscle. Eur J Appl Physiol Occup Physiol 58:765–771

    Google Scholar 

  5. Mays PK, Bishop JE, Laurent GJ (1988) Age-related changes in the proportion of types I and III collagen. Mech Ageing Dev 45:203–212

    Google Scholar 

  6. Mohan S, Radha E (1980) Age-related changes in rat muscle collagen. Gerontology 26:61–67

    Google Scholar 

  7. Bailey AJ (1975) Age-related changes during the biosynthesis and maturation of collagen fibres. Biochem Soc Trans 3:46–48

    Google Scholar 

  8. Listrat A, Lethias C, Hocquette JF et al (2000) Age-related changes and location of types I, III, XII and XIV collagen during development of skeletal muscles from genetically different animals. Histochem J 32:349–356

    Google Scholar 

  9. Wessel LM, Scholz S, Rusch M (2001) Characteristic pattern and management of intra-articular knee lesions in different pediatric age groups. J Pediatr Orthop 21:14–19

    Google Scholar 

  10. Damore DT, Metzl JD, Ramundo M et al (2003) Patterns in childhood sports injury. Pediatr Emerg Care 19:65–67

    Google Scholar 

  11. Taylor BL, Attia MW (2000) Sports-related injuries in children. Acad Emerg Med: Official J Soc Acad Emerg Med 7:1376–1382

    Google Scholar 

  12. Shea KG, Pfeiffer R, Wang JH et al (2004) Anterior cruciate ligament injury in pediatric and adolescent soccer players: an analysis of insurance data. J Pediatr Orthop 24:623–628

    Google Scholar 

  13. Gigante A, Bevilacqua C, Bonetti MG, Greco F (2003) Increased external tibial torsion in osgood-schlatter disease. Acta Orthop Scand 74(4):431–436

    Google Scholar 

  14. O’Neill DB, Micheli LJ (1988) Overuse injuries in the young athlete. Clin Sports Med 7:591–610

    Google Scholar 

  15. Rauh MJ, Macera CA, Ji M, Wiksten DL (2007) Subsequent injury patterns in girls’ high school sports. J Athletic Training 42:486–494

    Google Scholar 

  16. Rauh MJ, Nichols JF, Barrack MT (2010) Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athletic Training 45:243–252

    Google Scholar 

  17. Rauh MJ, Margherita AJ, Rice SG et al (2000) High school cross country running injuries: a longitudinal study. Clin J Sport Med: Official J Can Acad Sport Med 10:110–116

    Google Scholar 

  18. Micheli LJ, Klein JD (1991) Sports injuries in children and adolescents. Br J Sports Med 25:6–9

    Google Scholar 

  19. Micheli LJ (1995) Sports injuries in children and adolescents. Questions and controversies. Clin Sports Med 14:727–745

    Google Scholar 

  20. Falciglia F, Guzzanti V, Di Ciommo V, Poggiaroni A (2009) Physiological knee laxity during pubertal growth. Bull NYU Hosp Jt Dis 67(4):9–325

    Google Scholar 

  21. Venturelli M, Schena F, Zanolla L, Bishop D (2011) Injury risk factors in young soccer players detected by a multivariate survival model. J Sci Med Sport/Sports Med Aust 14:293–298

    Google Scholar 

  22. Vandervliet EJ, Vanhoenacker FM, Snoeckx A, Gielen JL, Van Dyck P, Parizel PM (2007) Sports-related acute and chronic avulsion injuries in children and adolescents with special emphasis on tennis. Br J Sports Med 41(11):827–831

    Article  PubMed  Google Scholar 

  23. Micheli LJ, Slater JA, Woods E, Gerbino PG (1986) Patella alta and the adolescent growth spurt. Clin Orthop Relat Res:159–162

    Google Scholar 

  24. Menant JC, Steele JR, Menz HB et al (2009) Rapid gait termination: effects of age, walking surfaces and footwear characteristics. Gait Posture 30:65–70

    Google Scholar 

  25. Menant JC, Steele JR, Menz HB et al (2009) Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait Posture 29:392–397

    Google Scholar 

  26. Benazzo F, Al E (1989) Attuali orientamenti nella patogenesi, evoluzione e trattamento degli ematomi muscolari negli atleti. IJ Sports Traumatol 4:273

    Google Scholar 

  27. Chan O, Del Buono A, Best TM, Maffulli N (2012) Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Arthrosc: Official J ESSKA 20:2356–2362

    Google Scholar 

  28. Kullmer K, Sievers KW, Rompe JD et al (1997) Sonography and MRI of experimental muscle injuries. Arch Orthop Trauma Surg 116:357–361

    Google Scholar 

  29. du Plessis MP (1979) [Muscle injuries] South African Med J Suid-Afrikaanse tydskrif vir geneeskunde 55:633–634

    Google Scholar 

  30. Kvist M, Jarvinen M (1982) Clinical, histochemical and biomechanical features in repair of muscle and tendon injuries. Int J Sports Med 3(1):12–14

    Google Scholar 

  31. Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A:822–832

    Google Scholar 

  32. Korenyi-Both AL, Korenyi-Both I (1986) Physical injuries, contractures and rigidity of skeletal muscle. J Med 17:109–120

    Google Scholar 

  33. Crisco JJ, Jokl P, Heinen GT et al (1994) A muscle contusion injury model. Biomechanics, physiology, and histology. Am J Sports Med 22:702–710

    Google Scholar 

  34. Reid MB, Haack KE, Franchek KM et al (1992) Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol 73:1797–1804

    Google Scholar 

  35. Reid MB, Shoji T, Moody MR, Entman ML (1992) Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J Appl Physiol 73:1805–1809

    Google Scholar 

  36. Jarvinen TA, Jarvinen TL, Kaariainen M et al (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764

    Google Scholar 

  37. Hurme T, Kalimo H, Lehto M, Jarvinen M (1991) Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med Sci Sports Exerc 23:801–810

    Google Scholar 

  38. Menetrey J, Kasemkijwattana C, Day CS et al (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br 82:131–137

    Google Scholar 

  39. Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integrative Comparative Physiol 288:R345–353

    Google Scholar 

  40. Molloy T, Wang Y, Murrell G (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33:381–394

    Google Scholar 

  41. Kadi F, Charifi N, Denis C et al (2005) The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch: Eur J Physiol 451:319–327

    Google Scholar 

  42. Siegel AL, Kuhlmann PK, Cornelison DD (2011) Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging. Skeletal Muscle 1:7

    Google Scholar 

  43. Li Y, Pan H, Huard J (2010) Isolating stem cells from soft musculoskeletal tissues. J Visualized Experiments: JoVE 41

    Google Scholar 

  44. Huard J (2008) Regenerative medicine based on muscle stem cells. J Musculoskelet Neuronal Interact 8:337

    Google Scholar 

  45. Khattak MJ, Ahmad T, Rehman R et al (2010) Muscle healing and nerve regeneration in a muscle contusion model in the rat. J Bone Joint Surg Br 92:894–899

    Google Scholar 

  46. Best TM, Hunter KD (2000) Muscle injury and repair. Phys Med Rehabil Clin North Am 11:251–266

    Google Scholar 

  47. Belechri M, Petridou E, Kedikoglou S, Trichopoulos D (2001) Sports injuries among children in six European union countries. Eur J Epidemiol 17:1005–1012

    Google Scholar 

  48. Maffulli N, Longo UG, Spiezia F, Denaro V (2011) Aetiology and prevention of injuries in elite young athletes. Med Sport Sci 56:187–200

    Google Scholar 

  49. Kriz P (2011) Overuse injuries in the young athlete. Med Health, R I 94:203, 206–208

    Google Scholar 

  50. Weiss JM, Arkader A, Wells LM, Ganley TJ (2012) Rotator cuff injuries in adolescent athletes. J Pediat Orthop Part B

    Google Scholar 

  51. Al-Qattan MM (2010) Zone I flexor profundus tendon repair in children 5–10 years of age using 3 “figure of eight” sutures followed by immediate active mobilization. Ann Plastic Surg 68:29–32

    Google Scholar 

  52. Al-Qattan MM (2011) A six-strand technique for zone II flexor-tendon repair in children younger than 2 years of age. Injury 42:1262–1265

    Google Scholar 

  53. Gigante A, Specchia N, Rapali S et al (1996) Fibrillogenesis in tendon healing: an experimental study. Boll Soc Ital Biol Sper 72:203–210

    Google Scholar 

  54. Cadet ER, Vorys GC, Rahman R et al (2010) Improving bone density at the rotator cuff footprint increases supraspinatus tendon failure stress in a rat model. J Orthop Res: Official Publ Orthop Res Soc 28:308–314

    Google Scholar 

  55. Anitua E, Sanchez M, Nurden AT et al (2007) Reciprocal actions of platelet-secreted TGF-beta1 on the production of VEGF and HGF by human tendon cells. Plast Reconstr Surg 119:950–959

    Google Scholar 

  56. Anitua E, Andia I, Sanchez M et al (2005) Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J Orthop Res: Official Publ Orthop Res Soc 23:281–286

    Google Scholar 

  57. Thomopoulos S, Das R, Sakiyama-Elbert S et al (2010) bFGF and PDGF-BB for tendon repair: controlled release and biologic activity by tendon fibroblasts in vitro. Ann Biomed Eng 38:225–234

    Google Scholar 

  58. Thomopoulos S, Zaegel M, Das R et al (2007) PDGF-BB released in tendon repair using a novel delivery system promotes cell proliferation and collagen remodeling. J Orthop Res: Official Publ Orthop Res Soc 25:1358–1368

    Google Scholar 

  59. Larson RV, Ulmer T (2003) Ligament injuries in children. Instr Course Lect 52:677–681

    Google Scholar 

  60. Sanders WE, Wilkins KE, Neidre A (1980) Acute insufficiency of the posterior cruciate ligament in children. Two case reports. J Bone Joint Surg Am 62:129–131

    Google Scholar 

  61. Chen WT, Shih TT, Tu HY et al (2002) Partial and complete tear of the anterior cruciate ligament. Acta radiol 43:511–516

    Google Scholar 

  62. Song EK, Seon JK, Park SJ, Yoon TR (2009) Clinical outcome of avulsion fracture of the anterior cruciate ligament between children and adults. J Pediatr Orthop Part B 18:335–338

    Google Scholar 

  63. Lo PA, Drake JM, Hedden D et al (2002) Avulsion transverse ligament injuries in children: successful treatment with nonoperative management. Report of three cases. J Neurosurg 96:338–342

    Google Scholar 

  64. Hawkins CA, Rosen JE (2000) ACL injuries in the skeletally immature patient. Bulletin 59:227–231

    Google Scholar 

  65. Finlayson CJ, Nasreddine A, Kocher MS (2010) Current concepts of diagnosis and management of ACL injuries in skeletally immature athletes. Physician Sports Med 38:90–101

    Google Scholar 

  66. Arbes S, Resinger C, Vecsei V, Nau T (2007) The functional outcome of total tears of the anterior cruciate ligament (ACL) in the skeletally immature patient. Int Orthop 31:471–475

    Google Scholar 

  67. Schachter AK, Rokito AS (2007) ACL injuries in the skeletally immature patient. Orthopedics 30:365–370; quiz 371–362

    Google Scholar 

  68. Steadman JR, Cameron-Donaldson ML, Briggs KK, Rodkey WG (2006) A minimally invasive technique (“healing response”) to treat proximal ACL injuries in skeletally immature athletes. J knee Surg 19:8–13

    Google Scholar 

  69. Flynn RK, Pedersen CL, Birmingham TB et al (2005) The familial predisposition toward tearing the anterior cruciate ligament: a case control study. Am J Sports Med 33:23–28

    Google Scholar 

  70. Mizuta H, Kubota K, Shiraishi M et al (1995) The conservative treatment of complete tears of the anterior cruciate ligament in skeletally immature patients. J Bone Joint Surg Br 77:890–894

    Google Scholar 

  71. Fleming BC, Spindler KP, Palmer MP et al (2009) Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med 37:1554–1563

    Google Scholar 

  72. Ju YJ, Muneta T, Yoshimura H et al (2008) Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res 332:469–478

    Google Scholar 

  73. Morito T, Muneta T, Hara K et al (2008) Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford) 47:1137–1143

    Google Scholar 

  74. Janssen RP, van der Wijk J, Fiedler A et al (2011) Remodelling of human hamstring autografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1299–1306

    Google Scholar 

  75. Sckell A, Leunig M, Fraitzl CR et al (1999) The connective-tissue envelope in revascularisation of patellar tendon grafts. J Bone Joint Surg Br 81:915–920

    Google Scholar 

  76. Yamakado K, Kitaoka K, Nakamura T et al (2001) Histologic analysis of the tibial bone tunnel after anterior cruciate ligament reconstruction using solvent-dried and gamma-irradiated fascia lata allograft. Arthroscopy 17:32

    Google Scholar 

  77. Falconiero RP, DiStefano VJ, Cook TM (1998) Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans. Arthroscopy 14:197–205

    Google Scholar 

  78. Marumo K, Saito M, Yamagishi T, Fujii K (2005) The “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med 33:1166–1173

    Google Scholar 

  79. Scheffler SU, Unterhauser FN, Weiler A (2008) Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:834–842

    Google Scholar 

  80. Zaffagnini S, De Pasquale V, Marchesini Reggiani L et al (2010) Electron microscopy of the remodelling process in hamstring tendon used as ACL graft. Knee Surg Sports Traumatol Arthrosc 18:1052–1058

    Google Scholar 

  81. Guzzanti V, Falciglia F, Gigante A, Fabbriciani C (1994) The effect of intra-articular ACL reconstruction on the growth plates of rabbits. J Bone Joint Surg Br 76:960–963

    Google Scholar 

  82. Flynn JM, Mackenzie W, Kolstad K et al (2000) Objective evaluation of knee laxity in children. J Pediatr Orthoped 20:259–263

    Google Scholar 

  83. Kocher MS, Garg S, Micheli LJ (2005) Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J Bone Joint Surg Am 87:2371–2379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gigante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Gigante, A., Busilacchi, A., Greco, F., de Palma, L. (2014). Basic Science and Injury in Growing Athletes: Muscle, Tendon, and Ligament. In: Guzzanti, V. (eds) Pediatric and Adolescent Sports Traumatology. Springer, Milano. https://doi.org/10.1007/978-88-470-5412-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5412-7_2

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5411-0

  • Online ISBN: 978-88-470-5412-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics