Skip to main content

Surgery

  • Chapter
  • First Online:
Imaging Spine After Treatment

Abstract

Surgery of spinal pathology should include: high cure rates, possibility of simply intervening on patients already treated, low recurrence rate, absence of contraindications, minimal side effects, no complications in the short, medium and long term, no acute or chronic toxicity, absence of requiring long hospitalization, short convalescence, maximum conservativity of spinal biomechanics in treated district, reduction of the need of post-operative use of orthopedic devices (busts, corsets etc.), low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonacci MD, Eismont FJ (2001) Neurologic complications after lumbar spine surgery. J Am Acad Orthop Surg 9:137–145

    PubMed  CAS  Google Scholar 

  2. Young PM, Berquist TH, Bancroft LW et al (2007) Complications of spinal instrumentation. Radiographics 27:775–789

    Article  PubMed  Google Scholar 

  3. Murtagh RD, Quencer RM, Castellvi AE et al (2011) New techniques in lumbar spinal instrumentation: what the radiologist needs to know. Radiology 260:317–330

    Article  PubMed  Google Scholar 

  4. Rutherford EE, Tarplett LJ, Davies EM et al (2007) Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances. Radiographics 27:1737–1749

    Article  PubMed  Google Scholar 

  5. Annertz M, Jonsson B, Stromqvist B et al (1995) Serial MRI in the early postoperative period after lumbar discectomy. Neuroradiology 37:177

    Article  PubMed  CAS  Google Scholar 

  6. Gallucci M, Caulo M, Masciocchi C (2001) il Rachide operato. In Compendio di Risonanza magnetica a cura di Dal Pozzo G, Utet Ed, pp 1047–1071

    Google Scholar 

  7. Arts M, Brand R, van der Kallen B et al (2011) Does minimally invasive lumbar disc surgery result in less muscle injury than conventional surgery? A randomized controlled trial. Eur Spine J 20:51–57

    Article  PubMed  Google Scholar 

  8. Bilsky HM (2000) Transpedicular approach for thoracic disk herniations. Neurosurg Focus 9:E3

    Article  PubMed  CAS  Google Scholar 

  9. Celestre PC, Pazmiño PR, Mikhael MM et al (2012) Minimally invasive approaches to the cervical spine. Orthop Clin North Am 43:137–147

    Article  PubMed  Google Scholar 

  10. Hirano Y, Mizuno J, Takeda M et al (2012) Percutaneous endoscopic lumbar discectomy: early clinical experience. Neurol Med Chir 52:625–630

    Article  Google Scholar 

  11. Jho HD (1999) Endoscopic transpedicular thoracic discectomy. J Neurosurgery Spine 91:151–156

    Article  CAS  Google Scholar 

  12. Davis AR (1994) A long-term outcome analysis of 984 surgically treated herniated lumbar discs. J Neurosurg 80:415–421

    Article  PubMed  CAS  Google Scholar 

  13. Hauger O, Obeid I, Pelé E (2010) Imaging of the fused spine. J Radiol 91:1035–1048

    Article  PubMed  CAS  Google Scholar 

  14. Hunter TB, Yoshino MT, Dzioba RB et al (2004) Medical devices oh the head, neck and spine. Radiographics 24:257–285

    Article  PubMed  Google Scholar 

  15. Nakashima H, Yukawa Y, Ito K et al (2011) Posterior approach for cervical fracture-dislocations with traumatic disc herniation. Eur Spine J 20:387–394

    Article  PubMed  Google Scholar 

  16. Lee CK (1993) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 18:2106–2117

    Article  Google Scholar 

  17. Lee CS, Hwang CJ, Lee SW et al (2009) Risk factors for adjacent segment disease after lumbar fusion. Eur Spine J 18:1637–1643

    Article  PubMed  Google Scholar 

  18. Stoll TM, Dubois G, Schwarzenbach O et al (2002) The dynamic neutralization system for the spine: a multicenter study of a novel non-fusion system. Eur Spine 11:S170–S178

    Google Scholar 

  19. van den Erenbeemt KD, Ostelo RW, van Royen BJ et al (2010) Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature. Eur Spine J 19:1262–1280

    Article  Google Scholar 

  20. Murtagh RD, Quencer RM, Cohen DS et al (2009) Normal and abnormal imaging findings in lumbar total disk replacement: devices and complications. Radiographics 29:105–118

    Article  PubMed  Google Scholar 

  21. Lindsey DP, Swanson KE, Fuchs P et al (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine 28:2192–2197

    Article  PubMed  Google Scholar 

  22. Sobottke R, Schlüter-Brust K, Kaulhausen T et al (2009) Interspinous implants (X Stop, Wallis, Diam) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome? Eur Spine J 18:1494–1503

    Article  PubMed  Google Scholar 

  23. Wilke HJ, Drumm J, Häussler K et al (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17:1049–1056

    Article  PubMed  Google Scholar 

  24. Zucherman JF, Hsu KY, Hartjien CA et al (2005) A multicenter, prospective, randomized trial evaluating the X stop interspinous process decompression system for treatment of neurogenic intermittent claudicatio: two-year follow-up results. Spine 30:1351–1358

    Article  PubMed  Google Scholar 

  25. Senegas J (2002) Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segment: the Wallis system. Eur Spine J 11:S164–S169

    PubMed  Google Scholar 

  26. Guizzardi G, Petrini P, Fabrizi AP (2005) The use of DIAM (interspinous stress-breaker device) in the DDD: Italian multicenter clinical experience. Spinal Arthroplasty Society, New York

    Google Scholar 

  27. Eif M, Schenke H (2005) The interspinous-U: Indications, experience, and results. Spinal Arthroplasty Society, New York

    Google Scholar 

  28. Chacko AG, Joseph M, Turel MK et al (2012) Multilevel oblique corpectomy for cervical spondylotic myelopathy preserves segmental motion. Eur Spine J 21:1360–1367

    Article  PubMed  Google Scholar 

  29. Hernandez R, Neroni M, Fiore C et al (2001) Cervical arthrodesis with interbody fusion titanium cages for cervical degenerative disease. Acta Medica Romana 39:383–394

    Google Scholar 

  30. Kim K, Isu T, Morimoto D et al (2012) Cervical anterior fusion with the Williams-Isu method: clinical review. J Nippon Med Sch 79:37–45

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raniero Mignini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Scarabino, T., Brandini, V., Santoro, M., Mignini, R. (2014). Surgery. In: Scarabino, T., Pollice, S. (eds) Imaging Spine After Treatment. Springer, Milano. https://doi.org/10.1007/978-88-470-5391-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5391-5_3

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5390-8

  • Online ISBN: 978-88-470-5391-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics