Skip to main content

Aspects of monitoring during ventilatory support (P0.1)

  • Chapter
Book cover Applied Physiology in Respiratory Mechanics

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

Abstract

Gas exchange (O2 and CO2) in the lungs is dependent on the respiratory pump to inflate the lungs and on the functioning of the lungs themselves. When the respiratory system is unable to mantain normal work, respiratory failure can develop. The respiratory pump includes the neurological respiratory control mechanism, peripheral nerves, respiratory muscles and chest wall structures. The act of breathing depends entirely on the stimulation of respiratory muscles by the action of the respiratory center, which is composed of several widely scattered neurons located bilaterally in the medulla oblungata and pons. Information from the chemoreceptors sensitive to respiratory gases and from the mechanoreceptors are integrated in the brain stem and spinal cord. It is useful to divide the respiratory control system into a voluntary and automatic. The voluntary system adapts respiration to rapidly changing environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Otis AB, Fenn WO, Rahn H (1950) The mechanics of breathing in man. J Appl Physiol 2: 592–607

    PubMed  CAS  Google Scholar 

  2. von Euler C (1983) On the central pattern generator for the basic breathing rhytmicity. J Appl Physiol 55: 1647–1659

    Google Scholar 

  3. Bowes G, Andrey SM, Kozar LF, Philipson EA (1982) Role of the carotid chemoreceptors in regulation of inspiratory onset. J Appl Physiol 52: 863–868

    PubMed  CAS  Google Scholar 

  4. Bowes G, Andrey SM, Kozar LF, Phillipson EA (1983) Ventilatory response to conspiratory flow-resistive loads in awake and sleeping dogs. J Appl Physiol 54: 1195–1201

    PubMed  CAS  Google Scholar 

  5. Hey EN, Lloyd BB, Cunningham DJC, Jukes MGM, Bolton DP (1966) Effects of various respiratory stimuls on the depth and frequency of breathing in man. Respiratory Physiology 1: 193–205

    Article  CAS  Google Scholar 

  6. Newsom Davies J, Stagg DJ (1975) Inter-relationship of the volume and time components of individual breaths in resting man. J Physiol 245: 481–498

    Google Scholar 

  7. Milic-Emili J, Grassino AE, Whitelaw WA, In.: Horbein TF (ed) (1981) Regulation of breathing. Part 2. Marcel Dekker, New York, pp 675–743

    Google Scholar 

  8. Milic-Emili J, Grunstein MM (1976) Drive and timing components of ventilation. Chest 70: 131–133

    PubMed  CAS  Google Scholar 

  9. Smith JC, Loring SH. Passive mechanical properties of the chest wall. In: Fishman AP, Macklem PT, Mead J, Geiger SR (eds) Handbook of Physiology. The Respiratory System. Mechanics of Breathing. Section 3, vol III, part 2, chap. 25 American Physiological Society, Bethesda, pp 429–442

    Google Scholar 

  10. Roussos CH, Campbell EJM. Respiratory muscles energetics. In: Fishman AP, Macklem PT, Mead J, Geiger SR (eds) Handbook of Physiology. The Respiratory System. Mechanics of breathing. Section 3, Vol. III. part 2, chap. 28 American Physiological Society, Bethesda, pp 481–509

    Google Scholar 

  11. Roussos CH, Macklem PT. Inspiratory muscles fatigue. In: Fishman AP, Macklem PT, Mead J, Geiger SR (eds) Handbook of Physiology. The Respiratory System. Mechanics of breathing. Section 3, Vol. III, part 2 American Physiological Society, Bethesda, pp 511–527

    Google Scholar 

  12. McCool FD, McCann DR, Leith DE, Hopping FG Jr (1986) Pressure-flow effects on endurance of inspiratory muscles. J Appl Physiol 60: 299–303

    PubMed  CAS  Google Scholar 

  13. Jardim J, Farkas G, Prefaut C, Thomas D, Macklem PT (1981) The failing inspiratory muscles under normoxic hypoxic carditions. Am Rev Respir Dis 124: 274–279

    PubMed  CAS  Google Scholar 

  14. Juan G, Calverley P, Talamo C, Schnader J, Roussos CH, NEJM (1984) Effect of carbon dioxide on diaphragmatic function in human beings. 310: 874–879

    CAS  Google Scholar 

  15. Aubier M, Farkas G, de Troyer A, Mozes R, Roussos CH (1981) Detection of diaphragmatic fatigue in man by phrenic stimulation. J Appl Physiol 50: 538–544

    PubMed  CAS  Google Scholar 

  16. Grunstein M, Younes M, Milic-Emili J (1973) Control of tidal volume and respiratory frequency in anesthetized cats. J Appl Physiol 35: 463–476

    PubMed  CAS  Google Scholar 

  17. Siafakas NM, Peslin R, Bonora M, Gautier H, Duron B, Milic-Emili J (1981) Phrenic activity respiratory pressure and volume changes in cats. J Appl Physiol 51: 109–121

    PubMed  CAS  Google Scholar 

  18. Whitelaw WA, Derenne JP, Couture J, Milic-Emili J (1976) Adaptation of anesthetized men into breathing through a respiratory resistor J Appl Physiol 41: 285–291

    CAS  Google Scholar 

  19. Milic-Emili J, Zin W. Relationship between neuromuscular respiratory drive and ventilatory output. In: Fishman AP, Macklem PT, Mead J, Geiger SR (eds) Handbook of Physiology. The Respiratory System. Mechanics of breathing. Section 3, vol. III, part 2. Chap. 35 American Physiological Society, Bethesda, pp 631–646

    Google Scholar 

  20. Milic-Emili J, Whitelaw WA, Derenne J (1975) Occlusion pressure, a simple measure of the respiratory center’s output. NEJM November 13: 1029–1030

    Google Scholar 

  21. Whitelaw WA, Drenne JP, Milic-Emili J (1975) Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol 23: 181–199

    Article  PubMed  CAS  Google Scholar 

  22. Marshall R (1962) Relationships between stimulus and work of breathing at different lung volumes. J Appl Physiol 17: 917–921

    Google Scholar 

  23. Pengelly LD, Alderson A, Milic-Emili J (1971) Mechanics of the diaphragm. J Appl Physiol 30: 796–805

    Google Scholar 

  24. Derenne JP, Grassino AE, Whitelaw WA et al (1975) Occlusion pressure in normal, supine men. Am Rev Respir Dis 111: 907

    Google Scholar 

  25. Marazzini L, Cavestri R, Gori D, Gatti L, Longhini E (1978) Difference between mouth and esophageal occlusion pressure during CO2 rebreathing in chronic obstructive pulmonary disease. Am Rev Respir Dis 118: 1027–1033

    PubMed  CAS  Google Scholar 

  26. Murciano D, Aubier M, Bussi S, Derenne JP, Pariente R, Milic-Emili J (1982) Comparison of esophageal and mouth occlusion pressure in patients with chronic obstructive pulminary disease during acute respiratory failure. Am Rev Respir Dis 126: 837–841

    PubMed  CAS  Google Scholar 

  27. Graham CS, Burki N (1990) The relationship of resting ventilation to mouth occlusion pressure–An index of resting respiratory function. Chest 900–906

    Google Scholar 

  28. Burki N, Mitchell LK, Chaudhary BA, Zeckman FW et al (1977) Measurements of mouth occlusion pressure as an index of respiratory center output in men. Clin Sci Mol Med 53: 117–123

    PubMed  CAS  Google Scholar 

  29. Herrera M, Blasco J, Venegas J, Berba A, Doblas A, Marquez E (1985) Mouth occlusion pressure in acute respiratory failure. Int Care Med 11: 134–139

    Article  CAS  Google Scholar 

  30. Sorly J, Grassino A, Lorange G, Milic-Emili (1975) Control of breathing in patients with chronic obstructive pulmonary disease. Cli Sci Mol Med 54: 295–304

    Google Scholar 

  31. Sassoon C, Te TT, Mahutte CK, Light RW (1987) Airway occlusion pressure. An important indicator for successfull weaning in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 135: 107–113

    Google Scholar 

  32. Soma K, Otsuka H, Tomita T (1988) Mouth Occlusion pressure as a useful indicator for weaning from mechanical ventilation. Tohuku J Exp Med 156: 181–187

    Article  Google Scholar 

  33. Whitelaw WA, Derenne JP (1993) Airway occlusion pressure. J Appl Physiol 1475–1483

    Google Scholar 

  34. Pierson DJ (1983) Weaning from mechanical ventilation in acute respiratory failure: concepts, indication, and techniques. Respir Care 28: 646–660

    Google Scholar 

  35. Sahn SA, Lakshminarayan S (1973) Bedside criteria for discontinuation of mechani-cal ventilation. Chest 63: 1002–1005

    Article  PubMed  CAS  Google Scholar 

  36. Brandolese R, Andreose U (1995) The problem of weaning in COPD patients. In: Gullo A (ed) Anaesthesia, Pain, Intensive Care and Emergency Medicine, Springer-Verlag, Milano

    Google Scholar 

  37. Fernandez (1990) Inspiratory occlude airway pressure. In: Benito A, Net A (eds) Pulmonary Function in Mechanically Ventilated Patients. Springer-Verlag. Berlin. pp 3949

    Google Scholar 

  38. Fernandez R, Cabrera J, Calaf N, Benito S (1990) P0, 1/Pimax An index for assessing respiratory capacity in acute respiratory failure. Int Care Med 16: 175–179

    Article  CAS  Google Scholar 

  39. Montgomery AB, Holle HO, Neagley SR, Pierson D, Schoene R (1987) Prediction of successfull ventilator weaning using airway occlusion pressure and hypercapnic challenge. Chest 91: 496–499

    Article  PubMed  CAS  Google Scholar 

  40. Marini JJ, Rodriguez M, Lamb V (1986) The inspiratory workload in patients initiated mechanical ventilation. Am Rev Respir Dis 134: 902–909

    PubMed  CAS  Google Scholar 

  41. Poggi R, Polese G, Brandolese R, Rossi A (1992) Respiratory workload during mechanical ventilation. In: Gullo A (ed) Anaesthesia, Pain, Intensive Care and Emergency Medicine, Springer-Verlag, Milano, pp 223–229

    Google Scholar 

  42. Broseghini C, Brandoles R, Poggi R, Polese G, Milic-Emili J, Rossi A (1988) Respiratory mechanics during the first day of mechanical ventilation in patients with pulmonary edema and chronic airway obstruction. Am Rev Respir Dis 138: 355–361

    Article  PubMed  CAS  Google Scholar 

  43. Pepe PE, Marini JJ (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis 126: 166–170

    PubMed  CAS  Google Scholar 

  44. Smith T, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airway obstruction. J Appl Physiol 65: 1488–1499

    PubMed  CAS  Google Scholar 

  45. Hussain S, Pardy R, Dempsey J (1985) Mechanical impedance as determinant of inspiratory neural drive during exercize in humans. J Appl Physiol 59: 365–375

    PubMed  CAS  Google Scholar 

  46. Milic-Emili J, Whitelaw WA, Grassino A (1981) Measurements and testing of respiratory drive. In: Hornbein Th (ed) Regulation of breathing. Dekker, New York pp 675–743

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Italia

About this chapter

Cite this chapter

Brandolese, R., Andreose, U. (1998). Aspects of monitoring during ventilatory support (P0.1). In: Milic-Emili, J. (eds) Applied Physiology in Respiratory Mechanics. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2928-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2928-6_16

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2930-9

  • Online ISBN: 978-88-470-2928-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics