Skip to main content

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

  • 103 Accesses

Abstract

Body composition has been studied for over 100 years. Early work tended to rely on chemical composition, for example by the end of the 19th century the water, fat, nitrogen and major mineral composition of the fetus had been established. 20th century composition studies expanded to include body fluid volumes and metabolic balance techniques, amongst others. Important works include the estimation of total body water by isotopic dilution [1], the concept of total exchangeable sodium and potassium [2], densitometric techniques for the relative proportion of lean and fat [3], body water and extracellular fluid volume for the calculation of cell mass and body fat [4], the estimation of lean and fat using naturally occurring 40K [5] and the use of neutron activation for measurement of both bulk and trace elements [6]. There have been numerous other advances in the last 30 years, however those works noted above have provided a foundation from which the measurement of body composition is undertaken today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Von Hevesy G, Hofer E (1934) Die Verweilzeit des Wassers im menschlichen Körper, untersucht mit Hilfe von “schwerem” Wasser als Indicator. Klin Wochschr 13:1524–1526.

    Article  Google Scholar 

  2. Moore FD, Olesen KH, McMurray JD, Parker HV, Ball MR, Boyden CM (1963) The body cell mass and its supporting environment: body composition in health and disease. WB Saunders, Philadelphia.

    Google Scholar 

  3. Behnke AR, Feen BG, Welham WC (1942) The specific gravity of healthy men. J Am MedAssoc 118:495–498.

    Google Scholar 

  4. McCance RA, Widdowson EM (1951) A method of breaking down the body weights of living persons into terms of extracellular fluid, cell mass and fat, and some applications of it to physiology and medicine. Proc Royal Soc Lond B(138):115–130.

    Google Scholar 

  5. Forbes GB, Hursh J, Gallup J (1961) Estimation of total body fat from potassium 40 content. Science 133:101–102.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson J, Osborn SB, Tomlinson RWS, Newton D, Rundo J, Salmon L, Smith JW (1964) Neutron-activation analysis in man in vivo — A new technique in medical investigation. Lancet 2:1201–1205.

    Article  PubMed  CAS  Google Scholar 

  7. Forbes GB (1987) Human body composition: growth, ageing, nutrition and activity. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  8. Shephard RJ (1991) Body composition in biological anthropology. Cambridge University Press, Cambridge.

    Google Scholar 

  9. Lohman TG (1992) Advances in body composition assessment. Human Kinetics, Leeds.

    Google Scholar 

  10. Davies PSW, Cole TJ (eds) (1995) Body composition techniques in health and disease. Cambridge University Press, Cambridge.

    Google Scholar 

  11. Roche AF, Heymsfield SB, Lohman TG (eds) (1996) Human body composition. Human Kinetics, Leeds.

    Google Scholar 

  12. Pierson RN (ed) (1998) Quality of the body cell mass: body composition in the third millennium. Springer-Verlag, Berlin Heidelberg New York (in press).

    Google Scholar 

  13. Lukaski HC (1987) Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 46:537–556.

    PubMed  CAS  Google Scholar 

  14. Brodie DA (1988) Techniques of measurement of body composition, parts I and II. Sports Med 5:11-4; 74–98.

    Article  PubMed  CAS  Google Scholar 

  15. Hill GL (1992) Body composition research: implications for the practice of clinical nutrition. J Parenteral Enterai Nutr 16:197–218.

    Article  CAS  Google Scholar 

  16. Elia M (1992) Body composition analysis: an evaluation of 2-component models, multicompartment models and bedside techniques. Clin Nutr 11:114–127.

    Article  PubMed  CAS  Google Scholar 

  17. Jebb SA, Elia M (1993) Techniques for the measurement of body composition: a practical guide. Int J Obes 17:611–621.

    CAS  Google Scholar 

  18. Sutcliffe JF (1996) A review of in vivo experimental methods to determine the composition of the human body. Phys Med Biol 41:791–833.

    Article  PubMed  CAS  Google Scholar 

  19. Heymsfield SB, Wang Z, Baumgartner RN, Ross R (1997) Human body composition: advances in models and methods. Annu Rev Nutr 17:527–558.

    Article  PubMed  CAS  Google Scholar 

  20. Fogelholm M, van Marken Lichtenbelt W (1997) Comparison of body composition methods: a literature analysis. Eur J Clin Nutr 51:495–503.

    Article  PubMed  CAS  Google Scholar 

  21. Ellis KJ, Yasumura S, Morgan WD (eds) (1987) In vivo body composition studies. Institute of Physical Sciences in Medicine, York.

    Google Scholar 

  22. Yasumura S, Harrison JE, McNeill KG, Woodhead AD, Dilmanian FA (eds) (1990) In vivo body composition studies: recent advances. Plenum, New York, Basic Life Sci 55.

    Google Scholar 

  23. Ellis KJ, Eastman JD (eds) (1993) Human body composition: in vivo methods, models and assessment. Plenum, New York, Basic Life Sci 60.

    Google Scholar 

  24. Alpsten M, Mattsson S (eds) (1998) International Symposium on in vivo body composition studies. Appl Radiat Isot 49(5/6).

    Google Scholar 

  25. Cohn SH (1981) In vivo neutron activation analysis: state of the art and future prospects. Med Phys 8:145–154.

    Article  PubMed  CAS  Google Scholar 

  26. Chettle DR, Fremlin JH (1984) Techniques of in vivo neutron activation analysis. Phys Med Biol 29:1011–1043.

    Article  PubMed  CAS  Google Scholar 

  27. Cohn SH, Parr RM (1985) Nuclear based techniques for the in vivo study of human body composition. Clin Phys Physiol Meas 6:275–301.

    Article  PubMed  CAS  Google Scholar 

  28. Ryde SJS (1995) In vivo neutron activation analysis: past, present and future. In: Davies PSW, Cole TJ (eds) Body composition techniques in health and disease. Cambridge University Press, Cambridge, pp 14–37.

    Chapter  Google Scholar 

  29. Ryde SJS, Birks JL, Morgan WD, Evans CJ, Dutton J (1993) A five-compartment model of body composition of healthy subjects assessed using in vivo neutron activation. Eur J Clin Nutr 47:863–874.

    PubMed  CAS  Google Scholar 

  30. Ryde SJS, Morgan WD, Sivyer A, Evans CJ, Dutton J (1987) A clinical instrument for multi-element in vivo analysis by prompt, delayed and cyclic neutron activation using 252Cf. Phys Med Biol 32:1257–1271.

    Article  PubMed  CAS  Google Scholar 

  31. Ryde SJS, Morgan WD, Evans CJ, Sivyer A, Dutton J (1989) Calibration and evaluation of a 252Cf based neutron activation analysis instrument for the determination of nitrogen in vivo. Phys Med Biol 34:1429–1441.

    Article  PubMed  CAS  Google Scholar 

  32. Kehayias JJ, Heymsfield SB, Lomonte AF, Wang J, Pierson RN (1991) In vivo determination of body fat by measuring total body carbon. Am J Clin Nutr 53:1339–1344.

    PubMed  CAS  Google Scholar 

  33. Dilmanian FA, Weber DA, Yasumura S, Kamen Y, Lidofsky LJ, Heymsfield SB, Pierson RN, Wang J, Kehayias JJ, Ellis KJ (1990) Performance of the delayed-and prompt-gamma neutron activation systems atBrookhaven National Laboratory. In: Yasumura S, Harrison JE, McNeill KG, Woodhead AD, Dilmanian FA (eds) In vivo body composition studies: recent advances. Plenum, New York, Basic Life Sci 55 pp 309–315.

    Chapter  Google Scholar 

  34. Dilmanian FA, Lidofsky LJ, Stamatelatos I, Kamen Y, Yasumura S, Vartsky D, Pierson RN, Weber D, Moore RI, Ma R (1998) Improvement of the prompt-gamma neutron activation facility at Brookhaven National Laboratory. Phys Med Biol 43:339–349.

    Article  PubMed  CAS  Google Scholar 

  35. Evans CJ, Ryde SJS, Hancock DA, Al-Agel F (1998) Monte Carlo simulation of prompt gamma neutron activation analysis using MCNP code. Appl Radiat Isot 49:541–544.

    Article  PubMed  CAS  Google Scholar 

  36. Knight GS, Beddoe AH, Streat SJ, Hill GL (1986) Body composition of two human cadavers by neutron activation and chemical analysis. Am J Physiol 250:E179-E185.

    Google Scholar 

  37. Laskey MA (1996) Dual-energy X-ray absorptiometry and body composition. Nutr 12:45–51.

    Article  CAS  Google Scholar 

  38. Jebb SA (1997) Measurement of soft tissue composition by dual energy X-ray absorptiometry. Br J Nutr 77:151–163.

    Article  PubMed  CAS  Google Scholar 

  39. Blake GM, Fogelman I (1997) Technical principles of dual energy X-ray absorptiometry. Sem Nucl Med 27:10–228.

    Article  Google Scholar 

  40. Lohman TG (1996) Dual energy X-ray absorptiometry. In: Roche AF, Heymsfield SB, Lohman TG (eds) Human body composition. Human Kinetics, Leeds, pp 63–78.

    Google Scholar 

  41. Tothill P, Avenell A, Love J, Reid DM (1994) Comparisons between Hologic, Lunar and Norland dual-energy X-ray absorptiometers and other techniques used for whole-body soft tissue measurements. Eur J Clin Nutr 48:781–794.

    PubMed  CAS  Google Scholar 

  42. Pierson RN, Wang J, Thornton JC, Kotler DP, Heymsfield SB, Weber DA, Ma RM (1995) Bone mineral and body fat measurements by two absorptiometry systems: comparisons with neutron activation analysis. Calcif Tissue Int 56:93–98.

    Article  PubMed  CAS  Google Scholar 

  43. Paton N, Macallan D, Jebb SA, Pazianas M, Griffin G (1995) Dual energy X-ray absorptiometry results differ between machines. Lancet 346:899–900.

    Article  PubMed  CAS  Google Scholar 

  44. Economos CE, Nelson ME, Fiatarone MA, Dallai GE, Heymsfield SB, Wang J, Yasumura S, Ma R, Vaswani AN, Russell-Aulet M, Pierson RN (1997) A multi-centre comparison of dual energy X-ray absorptiometers: in vivo and in vitro soft tissue measurement. Eur J Clin Nutr 51:312–317.

    Article  PubMed  CAS  Google Scholar 

  45. Kohrt WM (1995) Body composition by DXA: tried and true? Med Sci Sports Exerc 27:1349–1353.

    PubMed  CAS  Google Scholar 

  46. Sjostrom L (1991) A computer tomography based multicompartmental body composition technique and anthropometrie predictions of lean body mass, total and subcutaneous adipose tissue. Int J Obes 15(Suppl 2):19–30.

    PubMed  Google Scholar 

  47. Sjostrom L, Kvist H (1988) Regional body fat measurements with CT-scan and evaluation of anthropomorphic predictions. Acta Med Scand Suppl 723:169–177.

    PubMed  CAS  Google Scholar 

  48. Starck G, Lonn L, Cederblad A, Alpsten M, Sjostrom L, Ekholm S (1998) Dose reduction for body composition measurements with CT. Appl Radiat Isot 49:561–563.

    Article  PubMed  CAS  Google Scholar 

  49. Després JP, Ross R, Lemieux S (1996) Imaging techniques applied to the measurement of human body composition. In: Roche AF, Heymsfield SB, Lohman TG (eds) Human body composition. Human Kinetics, Leeds, pp 149–166.

    Google Scholar 

  50. Martin AD, Daniel MZ, Drinkwater DT, Clarys P (1994) Adipose tissue density, estimated adipose lipid fraction and whole-body adiposity in male cadavers. Int J Obes 18:79–83.

    CAS  Google Scholar 

  51. Ellis KJ (1996) Whole-body counting and neutron activation analysis. In: Roche AF, Heymsfield SB, Lohman TG (eds) Human body composition. Human Kinetics, Leeds, pp 45–61.

    Google Scholar 

  52. Brozek J, Grande F, Anderson JT, Keys A (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 110:113–140.

    Article  PubMed  CAS  Google Scholar 

  53. Siri WE (1956) The gross composition of the body. In: Tobias CA, Lawrence JH (eds) Advances in biological and medical physics 4. Academic Press, New York, pp 239–280.

    Google Scholar 

  54. Going SB (1996) Densitometry. In: Roche AF, Heymsfield SB, Lohman TG (eds) human body composition. Human Kinetics, Leeds, pp 3–23.

    Google Scholar 

  55. Lohman TG (1981) Skinfolds and body density and their relation to body fatness: a review. Human Biol 53:181–225.

    PubMed  CAS  Google Scholar 

  56. Sheng HP, Huggins RA (1979) A review of body composition studies with emphasis on total body water and fat. Am J Clin Nutr 32:630–647.

    PubMed  CAS  Google Scholar 

  57. Schoeller DA, van Santen E, Paterson DW, Dietz W, Jaspan J, Klein PD (1980) Total body water measurement in humans with 180 and 2H labelled water. Am J Clin Nutr 33:2686–2693.

    PubMed  CAS  Google Scholar 

  58. Culebras JM, Moore FD (1977) Total body water and exchangeable hydrogen. 1. Theoretical calculation of nonaqueous exchangeable hydrogen in man. Am J Physiol 232:R54–59.

    PubMed  CAS  Google Scholar 

  59. Streat SJ, Beddoe AH, Hill GL (1985) Measurement of total body water in intensive care patients with fluid overload. Metabolism 34:688–694.

    Article  PubMed  CAS  Google Scholar 

  60. Evans CJ, Thomas DW, Ryde SJS, Williams AJ (1994) An internal chlorine standardisation method for absolute measurements of total body calcium using prompt gamma neutron analysis: results in renal patients. Physiol Meas 15:67–77.

    Article  PubMed  CAS  Google Scholar 

  61. Ross R, Leger L, Morris D, de Guise J, Guardo R (1992) Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol 72:787–795.

    PubMed  CAS  Google Scholar 

  62. Lohman TG, Roche AF, Martorell R (eds) (1988) Anthropomorphic Standardization Reference Manual. Human Kinetics, Leeds.

    Google Scholar 

  63. Durnin JVGA, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–97.

    Article  PubMed  CAS  Google Scholar 

  64. Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 4:497–504.

    Article  Google Scholar 

  65. Conway JM, Norris KH, Bodwell CE (1984) A new approach for the estimation of body composition: infrared interactance. Am J Clin Nutr 40:1123–1130.

    PubMed  CAS  Google Scholar 

  66. Elia M, Parkinson SA, Diaz E (1990) Evaluation of near infrared interactance as a method for predicting body composition. Eur J Clin Nutr 44:113–121.

    PubMed  CAS  Google Scholar 

  67. Thomas DW, Ryde SJS, Ali PA, Birks JL, Evans CJ, Saunders NH, Al-Zeibak S, Dutton J, Hancock DA (1997) The performance of an infrared interactance instrument for assessing total body fat. Physiol Meas 18:305–315.

    Article  PubMed  CAS  Google Scholar 

  68. Booth RAD, Goddard BA, Patton A (1966) Measurement of fat thickness in man: a comparison of ultrasound, Harpenden callipers and electrical conductivity. Br J Nutr 20:719–725.

    Article  PubMed  CAS  Google Scholar 

  69. Roche AF (1996) Anthropometry and ultrasound. In: Roche AF, Heymsfield SB, Lohman TG (eds) Human body composition. Human Kinetics, Leeds, pp 167–189.

    Google Scholar 

  70. Volz PA, Ostrove SM (1984) Evaluation of a portable ultrasonoscope in assessing the body composition of college-age women. Med Sci Sports Exer 16:97–102.

    Article  CAS  Google Scholar 

  71. Fanelli MT, Kuczmarksi RJ (1984) Ultrasound as an approach to assessing body composition. Am J Clin Nutr 39:703–709.

    PubMed  CAS  Google Scholar 

  72. Presta E, Wang J, Harrison GG, Harker W, Van Italie TB (1983) Measurement of total body electrical conductivity: a new method for estimation of body composition. Am J Clin Nutr 37:735–739.

    PubMed  CAS  Google Scholar 

  73. Van Loan MD, Mayclin P (1987) A new TOBEC instrument and procedure for the assessment of body composition: use of Fourier coefficients to predict lean body mass and total body water. Am J Clin Nutr 45:131–137.

    Google Scholar 

  74. Baumgartner RN (1996) Electrical impedance and total body electrical conductivity. In: Roche AF, Heymsfield SB, Lohman TG (eds) Human body composition. Human Kinetics, Leeds, pp 79–107.

    Google Scholar 

  75. Thomas BJ, Ward LC, Cornish BH (1998) Bioimpedance spectrometry in the determination of body water compartments: accuracy and clinical significance. Appl Radiat Isot 49:447–455.

    Article  PubMed  CAS  Google Scholar 

  76. Deurenberg P, Schouten FJM (1992) Loss of total body water and extracellular water assessed by multifrequency impedance. Eur J Clin Nutr 46:247–255.

    PubMed  CAS  Google Scholar 

  77. Forbes GB, Simon W, Amatruda JM (1992) Is bioimpedance a good predictor of body-composition change? Am J Clin Nutr 56:4–6.

    PubMed  CAS  Google Scholar 

  78. NIH (1996) NIH Consensus statement. Bioelectrical impedance analysis in body composition measurement. Nutrition 12:749–762.

    Article  Google Scholar 

  79. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S (1983) Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr 36:478–494.

    Google Scholar 

  80. Mendez J, Lukaski HC and Buskirk ER (1984) Fat-free mass as a function of max. O2 consumption and 24-hour urinary creatinine, and 3-methylhistidine excretion. Am J Clin Nutr 39:710–715.

    PubMed  CAS  Google Scholar 

  81. McNeill G, Fowler PA, Maughan RJ, McGaw BA, Fuller MF, Gvozdanovic D, Gvozdanovic S (1991) Body fat in lean and overweight women estimated by six methods. Br J Nutr 65:95–103.

    Article  PubMed  CAS  Google Scholar 

  82. Ryde SJS, Thomas DW, Birks JL, Ali PA, Saunders NH, Morgan WD (1993) Assessment of body fat: a comparison of techniques. Basic Life Sci 60:59–62.

    PubMed  CAS  Google Scholar 

  83. Bosaeus I, Johannsson G, Rosen T, Hallgren P, Tolli J, Sjostrom L, Bengtsson BA (1996) Comparison of methods to estimate body fat in growth hormone déficient adults. Clin Endocrin 44:395–402.

    Article  CAS  Google Scholar 

  84. Wang ZM, Deurenberg P, Guo SS, Pietrobelli A, Wang J, Pierson RN, Heymsfield SB (1998) Six-compartment body composition model: inter-method comparisons of total body fat measurement. Int J Obes 22:329–337.

    Article  CAS  Google Scholar 

  85. Kehayias JJ (1993) Ageing and body composition: possibilities for future studies. J Nutr 123:454–458.

    PubMed  CAS  Google Scholar 

  86. Sutcliffe JF, Mitra S, Hill GL (1990) In vivo measurement of total body carbon using 238Pu, Be neutron sources. Phys Med Biol 35:1089–1098.

    Article  PubMed  CAS  Google Scholar 

  87. Beddoe AH, Zuidmeer H, Hill GL (1984) A prompt gamma in vivo neutron activation analysis facility for measurement of total-body nitrogen in the critically ill. Phys Med Biol 29:371–383.

    Article  PubMed  CAS  Google Scholar 

  88. Mitra S, Plank LD, Hill GL (1993) Calibration of a prompt gamma in vivo neutron activation facility for direct measurement of total body protein in intensive care patients. Phys Med Biol 38:1971–1975.

    Article  PubMed  CAS  Google Scholar 

  89. Baur LA, Allen BJ, Rose A, Blagojevic N, Gaskin KJ (1991) A total body nitrogen facility for paediatric use. Phys Med Biol 36:1363–1375.

    Article  PubMed  CAS  Google Scholar 

  90. Ma R, Zhao X, Rarback HM, Yasumura S, Dilmanian FA, Moore RI, Lomonte AF, Vodopia KA, Liu HB, Economos CD, Nelson ME, Aloia JF, Vaswani AN, Weber DA, Pierson RN, Joel DD (1996) Calibration of the delayed-gamma neutron activation facility. Med Phys 23:273–277.

    Article  PubMed  CAS  Google Scholar 

  91. Mitra S, Plank LD, Knight GS, Hill GL (1993) In vivo measurement of total-body chlorine using the 8.57 MeV prompt de-excitation following thermal neutron capture. Phys Med Biol 38:161–172.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Ryde, S.J.S. (1999). Measurement of the body composition. In: Guarnieri, G., Iscra, F. (eds) Metabolism and Artificial Nutrition in the Critically Ill. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2901-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2901-9_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0042-1

  • Online ISBN: 978-88-470-2901-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics