Skip to main content

Integrated Imaging

  • Chapter
Sports Cardiology

Abstract

In 1957, Sones performed the first human selective coronary arteriography, opening a new era in the assessment of coronary artery disease in vivo [1]. More than fifty years since its introduction in the clinical field, coronary angiography remains an irreplaceable diagnostic test in the evaluation of ischemic heart disease. Recently, however, the introduction of other coronary imaging techniques has helped in redefining its limits and usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sones FM, Shirey EK (1962) Cine coronary arteriography. Mod Concepts Cardiovasc Dis 31:735–8

    PubMed  Google Scholar 

  2. Garrone P, et al (2009) Quantitative coronary angiography in the current era: principles and applications. J Interv Cardiol 22(6):527–36

    Article  PubMed  Google Scholar 

  3. Agostoni P, et al (2008) Comparison of assessment of native coronary arteries by standard versus three-dimensional coronary angiography. Am J Cardiol 102(3):272–9

    Article  PubMed  Google Scholar 

  4. Porto I, et al (2012) Comparison of Two-and Three-Dimensional Quantitative Coronary Angiography to Intravascular Ultrasound in the Assessment of Intermediate Left Main Stenosis. Am J Cardiol

    Google Scholar 

  5. Topol EJ, SE Nissen (1989) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation, 1995. 92(8): p. 2333–42.

    Article  Google Scholar 

  6. Gussenhoven, E.J., et al., Intravascular ultrasonic imaging: histologic and echographic correlation. Eur J Vasc Surg 3(6):571–6

    Google Scholar 

  7. Patel MR, et al (2010) Low diagnostic yield of elective coronary angiography. N Engl J Med 362(10):886–95

    Article  PubMed  CAS  Google Scholar 

  8. Schmermund A, Erbel R (2001) Unstable coronary plaque and its relation to coronary calcium. Circulation 104(14):1682–7

    Article  PubMed  CAS  Google Scholar 

  9. Alfonso F, et al (1994) Intravascular ultrasound imaging of angiographically normal coronary segments in patients with coronary artery disease. Am Heart J 127(3):536–44

    Article  PubMed  CAS  Google Scholar 

  10. Gould KL, Kirkeeide RL, Buchi M (1990) Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 15(2):459–74

    Article  PubMed  CAS  Google Scholar 

  11. Camici PG, Crea F (2007), Coronary microvascular dysfunction. N Engl J Med 356(8):830–40

    Article  PubMed  CAS  Google Scholar 

  12. Tonino PA et al (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55(25):2816–21

    Article  PubMed  Google Scholar 

  13. Potkin BN et al (1990) Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81(5):1575–85

    Article  PubMed  CAS  Google Scholar 

  14. Gussenhoven EJ et al (1989) Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol 14(4):947–52

    Article  PubMed  CAS  Google Scholar 

  15. Glagov S et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316(22):1371–5

    Article  PubMed  CAS  Google Scholar 

  16. Nissen SE et al (1991) Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 84(3):1087–99

    Article  PubMed  CAS  Google Scholar 

  17. Okura H et al (2007) Atherosclerotic plaque with ultrasonic attenuation affects coronary reflow and infarct size in patients with acute coronary syndrome: an intravascular ultrasound study. Circ J 71(5):648–53

    Article  PubMed  Google Scholar 

  18. Hausmann D et al (1995) The safety of intracoronary ultrasound. A multicenter survey of 2207 examinations. Circulation 91(3):623–30

    Article  PubMed  CAS  Google Scholar 

  19. Mintz GS et al (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37(5):1478–92

    Article  PubMed  CAS  Google Scholar 

  20. Di Mario C et al (1998) Clinical application and image interpretation in intracoronary ultrasound. Study Group on Intracoronary Imaging of the Working Group of Coronary Circulation and of the Subgroup on Intravascular Ultrasound of the Working Group of Echocardiography of the European Society of Cardiology. Eur Heart J 19(2):207–29

    Article  PubMed  Google Scholar 

  21. Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103(4):604–16

    Article  PubMed  CAS  Google Scholar 

  22. Kang SJ et al (2011) Validation of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ Cardiovasc Interv 4(1):65–71

    Article  PubMed  Google Scholar 

  23. De la Torre Hernandez JM et al (2011) Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J Am Coll Cardiol 58(4):351–8

    Article  PubMed  Google Scholar 

  24. Kimura BJ, Bhargava V, DeMaria AN (1995) Value and limitations of intravascular ultrasound imaging in characterizing coronary atherosclerotic plaque. Am Heart J 130(2):386–96

    Article  PubMed  CAS  Google Scholar 

  25. Garcia-Garcia HM et al (2011) IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imaging 27(2):215–24

    Article  PubMed  Google Scholar 

  26. Tuzcu EM, Weissman NJ (2010) Imaging coronary artery histology: a virtual pursuit? Circ Cardiovasc Imaging 3(4):348–50

    Article  PubMed  Google Scholar 

  27. Nasu K et al (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47(12):2405–12

    Article  PubMed  Google Scholar 

  28. Heo JH et al (2011) Reproducibility of intravascular ultrasound iMAP for radiofrequency data analysis: Implications for design of longitudinal studies. Catheter Cardiovasc Interv

    Google Scholar 

  29. Kawasaki M et al (2002) In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 105(21):2487–92

    Article  PubMed  Google Scholar 

  30. Tearney GJ et al (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol 59(12):1058–72

    Article  PubMed  Google Scholar 

  31. Bezerra HG et al (2009) Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2(11):1035–46

    Article  PubMed  Google Scholar 

  32. Yabushita H et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–5

    Article  PubMed  Google Scholar 

  33. Jang IK et al (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4):604–9

    Article  PubMed  Google Scholar 

  34. Porto I et al (2012) Predictors of Periprocedural (Type IVa) Myocardial Infarction, as Assessed by Frequency-Domain Optical Coherence Tomography. Circ Cardiovasc Interv

    Google Scholar 

  35. Bouma BE et al (2003) Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89(3):317–20

    Article  PubMed  CAS  Google Scholar 

  36. Tearney GJ et al (2008) Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging 1(6):752–61

    Article  PubMed  Google Scholar 

  37. Yamaguchi T et al (2008) Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. Am J Cardiol 101(5):562–7

    Article  PubMed  Google Scholar 

  38. Prati F et al (2007) Safety and feasibility of a new nonocclusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios. EuroIntervention 3(3):365–70

    Article  PubMed  Google Scholar 

  39. Prati F et al (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31(4):401–15

    Article  PubMed  Google Scholar 

  40. Radu MD, Falk E (2012) In search of vulnerable features of coronary plaques with optical coherence tomography: is it time to rethink the current methodological concepts? Eur Heart J 33(1):9–12

    Article  PubMed  Google Scholar 

  41. Capodanno D et al (2009) Comparison of optical coherence tomography and intravascular ultrasound for the assessment of in-stent tissue coverage after stent implantation. EuroIntervention 5(5):538–43

    Article  PubMed  Google Scholar 

  42. Porto I, Di Vito L, Burzotta F, Niccoli G et al (2012) Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv 5:89–96, S1-6. Epub 2012 Jan 31. PubMed PMID:22298799

    Article  PubMed  CAS  Google Scholar 

  43. Porto I, Cautilli G, Di Vito L, Bolognese L (2012) Late stent thrombosis visualized with three-dimensional optical coherence tomography image reconstruction. G Ital Cardiol 13:169–170

    Google Scholar 

  44. Amano T, Matsubara T, Uetani T et al (2007) Impact of Metabolic Syndrome on Tissue Characteristics of Angiographically Mild to Moderate Coronary Lesions: Integrated Backscatter Intravascular Ultrasound Study. J Am Coll Card 49:1149–1156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Porto, I., Vergallo, R., Piro, M., Pironi, B., Fioranelli, M. (2012). Integrated Imaging. In: Fioranelli, M., Frajese, G. (eds) Sports Cardiology. Springer, Milano. https://doi.org/10.1007/978-88-470-2775-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2775-6_11

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2774-9

  • Online ISBN: 978-88-470-2775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics