Skip to main content

Glucose Metabolism in Multicellular Spheroids, ATP Production and Effects of Acidity

  • Chapter
Book cover New Challenges for Cancer Systems Biomedicine

Part of the book series: SIMAI Springer Series ((SEMA SIMAI))

  • 1156 Accesses

Abstract

In hypoxic conditions cells switch to the anaerobic pathway of glucose metabolism. As a byproduct lactate is produced together with H+, lowering pH. Acidity beyond some threshold may cause cell death. Moreover, anaerobic metabolism is far less efficient in terms of ATP production, and a scarce availability of glucose may result in insufficient ATP production rate to sustain the cell life. In this paper first of all we review some results concerning the structure of multicellular tumor spheroids in which the onset of a necrotic core is caused by the drop of ATP production rate below the viability threshold. Then we shortly discuss the effects of combined insufficient ATP production rate and excess of acidity on both vascular and avascular tumors. The last part of the paper is devoted to the phenomenon of acid mediated tumor invasion, which exploits the different resistance to acidity of tumor and of normal cells. In particular, a one dimensional model is discussed in which invasion takes the form of a travelling wave front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astanin, S., Tosin, A.: Mathematical model of tumor cord growth along the source of nutrient. Math. Model. Nat. Phenom. 2, 153–177 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubert, A., Costalat, R.: Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J. Cereb. Blood Flow Metabol. 25, 1476-1490(2005)

    Article  Google Scholar 

  3. Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C.: ATP production and necrosis formation in a tumor spheroid model. Math. Model. Nat. Phenom. 2, 30–46 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C.: Necrotic core in EMT6/Ro tumor spheroids: is it caused by an ATP deficit? J. Theor. Biol. 262, 142–150 (2010)

    Article  Google Scholar 

  5. Bianchini, L., Fasano, A.: A model combining acid-mediated tumor invasion and nutrient dynamics. Nonlinear Anal. Real World Appl. 10, 1955–1975 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carpenter, L., Halestrap, A.P.: The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumor cells studied with the intracellular pH indicator BCECF. Biochem. J. 304, 751–760 (1994)

    Article  Google Scholar 

  7. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumor spheroids. Cell Prolif. 25, 1–22 (1992)

    Article  Google Scholar 

  8. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell.Physiol. 151, 386–394 (1992)

    Article  Google Scholar 

  9. Dairkee, S.H., Deng, G., Stampfer, M.R., Waldman, F.M., Smith, H.S.: Selective cell culture of primary breast carcinoma. Cancer Res. 55(12), 2516–2519 (1995)

    Google Scholar 

  10. Dimmer, K.S., Friedrich, B., Lang, F., Deitmer, W., Braer, S.: The low-affinity monocarboxy- late transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350,219-227 (2000)

    Article  Google Scholar 

  11. Fasano, A., Gandolfi, G.: The steady state of multicellular tumor spheroids: a modelling challenge. In Friedman A., Kashdan E., Ledzewicz U., Schaettler H. (eds.) Mathematical Methods and Models in Biomedicine, Springer, New York (in press)

    Google Scholar 

  12. Fasano, A., Herrero, M.A., Rocha Rodrigo, M.: Slow and fast invasion waves in a model of acid-mediated tumor growth. Math. Biosci. 220, 45–56 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fisher, R.A.: The wave of advance of advantageous genes, Ann. Eugenics 7, 353–369 (1937)

    MATH  Google Scholar 

  14. Folkman, J., Hochberg, M.: Self-regulation of growth in three dimensions. J. Exp. Med. 138, 745-753(1973)

    Article  Google Scholar 

  15. Freyer, J.P., Sutherland, R.M.: A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6 ∕ Ro spheroids during growth. J. Cell. Physiol. 124, 516–524 (1985)

    Article  Google Scholar 

  16. Freyer, J.P., Sutherland, R.M.: Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 46, 3504- 3512(1986)

    Google Scholar 

  17. Gatenby, R.A., Gawlinski E.T.: A reaction–diffusion model of cancer invasion, Cancer Res., 56, 5745–5753 (1996)

    Google Scholar 

  18. Gerlee, P., Anderson, A.R.: A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype. J. Theor. Biol. 250, 705–722 (2008)

    Article  MathSciNet  Google Scholar 

  19. Hinkle, P.C., Kumar, M.A., Resetar, A., Harris, D.L.: Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30, 3576–3582 (1991)

    Article  Google Scholar 

  20. Kolmogorov, A.A., Petrovsky, I.G., Piskunov, N.S.: Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, Acta Physiokim- icaURSS 9, 105-130(1938)

    Google Scholar 

  21. Olsen, L., Sherrat, J.A., Maini, Ph.K., Arnold, F.: A mathematical model for the capillary endothelial cell-extracellular matrix interaction in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol. 14, 261–281 (1997)

    Article  MATH  Google Scholar 

  22. Poole, R.C., Halestrap, A.P.: Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264, C761-C782 (1993)

    Google Scholar 

  23. Schroeder, T., Yuan, H., Viglianti, B.L., Peltz, C., Asopa, S., Vujaskovic, Z., Dewhirst, M.W.: Spatial heterogeneity and oxygen dependence of glucose consumption in R3230Ac and fibrosarcomas of the Fischer 344 rat. Cancer Res. 65, 5163–5171 (2005)

    Article  Google Scholar 

  24. Smallbone, K., Gatenby, R.A., Gillies, R.J., Maini, P.K., Gavaghan, D.J.: Metabolic changes during carcinogenesis: potential impact on invasiveness. J. Theor. Biol. 244, 703–713 (2007)

    Article  MathSciNet  Google Scholar 

  25. Smallbone, K., Gavaghan D.J., Gatenby R.A., Maini P.K.: The role of acidity in solid tumor growth and invasion, Br. J. Radiol. 76, S11 (2005)

    Google Scholar 

  26. Spencer, T.L., Lehninger, A.L.: L-lactate transport in Ehrlich ascites-tumor cells. Biochem. J. 154, 405–414 (1976)

    Article  Google Scholar 

  27. Stryer, L.: Biochemistry. W.H. Freeman, New York, Chaps. 15–17, (1988)

    Google Scholar 

  28. Vaughan-Jones, R.D., Peercy, B.E., Keener, J.P., Spitzer, K.W.: Intrinsic H+ ion mobility in the rabbit ventricular myocyte. J. Physiol. 541, 139–158 (2002)

    Article  Google Scholar 

  29. Venkatasubramanian, R., Henson, M.A., Forbes, N.S.: Incorporating energy metabolism into a growth model of multicellular tumor spheroids. J. Theor. Biol. 242, 440–453 (2006)

    Article  MathSciNet  Google Scholar 

  30. Warburg O.H, Posener K., Negelein, E.: Über den Stoffwechsel der Tumoren. Biochemische Zeitschrift, 152, 319–344 (1924). Reprinted in English in: Warburg O.: On metabolism of tumors. Constable, London, (1930)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the editors of this volume for their kind invitation to write the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fasano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Fasano, A. (2012). Glucose Metabolism in Multicellular Spheroids, ATP Production and Effects of Acidity. In: d’Onofrio, A., Cerrai, P., Gandolfi, A. (eds) New Challenges for Cancer Systems Biomedicine. SIMAI Springer Series. Springer, Milano. https://doi.org/10.1007/978-88-470-2571-4_9

Download citation

Publish with us

Policies and ethics