Skip to main content

Optimizing Cancer Chemotherapy: From Mathematical Theories to Clinical Treatment

  • Chapter
  • 1165 Accesses

Part of the book series: SIMAI Springer Series ((SEMA SIMAI))

Abstract

Cancer chemotherapy is much influenced by the “dose dense” paradigm, advocating maximally possible dose density early in treatment. This paradigm is based on a controversial mathematical model, assuming Gompertz tumor growth law. Alternatively, it has been suggested that for maximizing efficacy/toxicity ratio in cancer chemotherapy, the inter-dosing intervals should be determined according to the Resonance theory. This theory asserts that cell growth is maximal when the periodicity of drug administration is an integer or fractional multiple of the characteristic periodicity of the cell population. Model analysis and in vitro and in vivo experiments, suggest that differences in cell-cycle distributions of host and cancer cells canbe taken advantage of in chemotherapy by cell-cycle phase-specific drugs which use Resonance or Anti-Resonance (stochastic) drug pulsing. Mathematical proofs showing long-term prediction accuracy of cell population growth models under cell- cycle phase-specific drugs, enabled developing a heuristic optimization method for drug scheduling. Using this method in conjunction with personalized models of vascular tumor growth under chemotherapy by docetaxel and bevacizumab, an optimal combination regimen was tailored to a particular mesenchymal chondrosarcoma patient. The personalized regimen was prospectively validated, leading to increased longevity and quality of life of the patient. This patient's model was further simulated, suggesting that the relative advantage of “Dose Dense” drug therapy depends on personal cytokinetic and angiogenic parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agur, Z.: Persistence in uncertain environments. In: Freedman, H.I., Strobeck, C. (eds.) Population Biology, pp. 125–132. Lecture Notes in Biomathematics 51. Springer, Heidelberg (1982)

    Google Scholar 

  2. Agur, Z.: Randomness, synchrony and population persistence. J. Theor. Biol. 112, 677–693 (1985)

    Article  MathSciNet  Google Scholar 

  3. Agur, Z.: From the evolution of toxin resistance to virtual clinical trials: the role of mathematical models in oncology. Future Oncol. 6, 917–927 (2010)

    Article  Google Scholar 

  4. Agur, Z., Arnon, R., Sandak, B., Schechter, B.: The effect of the dosing interval on myelotoxicity and survival in mice treated by cytarabine. Eur. Jour. Cancer. 28A, 1085–1090 (1992)

    Article  Google Scholar 

  5. Agur, Z., Arnon, R., Schechter, B.: Reduction of cytotoxicity to normal tissues by new regimes of cell-cycle phase-specific drugs. Math. Biosci. 92, 1–15 (1988)

    Article  MATH  Google Scholar 

  6. Agur, Z., Cojocaru, L., Mazor, G., Anderson, R., Danon, Y.: Pulse mass measles vaccination across age cohorts. Proc.Natl. Acad. Sci. USA 90, 11698–11702 (1993)

    Article  Google Scholar 

  7. Agur, Z., Dvir, Y.: Use of knowledge on {$n} series for predicting optimal chemotherapy treatment. Random & Computational Dynamics 2, 279–286 (1996)

    MATH  Google Scholar 

  8. Agur, Z., Hassin, R., Levy, S.: Optimizing chemotherapy scheduling using local search heuristics. Operations Research 54, 829–846 (2006)

    Article  MATH  Google Scholar 

  9. Arakelyan, L., Vainstein, V., Agur, Z.: A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and antimaturation therapy on vascular tumor growth. Angiogenesis 5, 203–214 (2002)

    Article  Google Scholar 

  10. Cojocaru, L., Agur, Z.: A theoretical analysis of interval drug dosing for cell-cycle-phase- specific drugs. Math. Biosci. 109, 85–97 (1992)

    Article  MATH  Google Scholar 

  11. Chabner, B.A., Murphy, M.J. Jr.: Breast cancer: A tale of two centuries: With implications for understanding cancer metastasis and cancer stem cell biology. Oncologist 10, 369 (2005)

    Article  Google Scholar 

  12. Dibrov, B.F., Zhabotinsky, A.M., Neifakh, Yu.A., Orlova, M.P., Churikova, L.I.: Mathematical model of cancer chemotherapy.Periodic schedules of phase-specific cytotoxic-agent administration increasing the selectivity of therapy, Math. biosci. 73, 1–31 (1985)

    Google Scholar 

  13. Evans, W.E., McLeod, H.L.: Pharmacogenomics-drug disposition, drug targets, and side effects. N. Engl. J. Med. 348, 538–549 (2003)

    Article  Google Scholar 

  14. Gorelik, B., Ziv, I., Shohat, R., Wick, M., Webb, C., Hankins, D., Sidransky, D., Agur, Z.: Efficacy of once weekly docetaxel combined with bevacizumab for patients with intense angio- genesis: validation of a new theranostic method in mesenchymal chondrosarcoma xenografs. Cancer Research 68, 9033–9040 (2008)

    Article  Google Scholar 

  15. Hart, D., Shochat, E., Agur, Z.: The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer 78, 382–387 (1998)

    Article  Google Scholar 

  16. Kheifetz, Y., Kogan, Y., Agur, Z.: Long-range predictability in models of cell populations subjected to phase-specific drugs: growth-rate approximation using positive compact operators properties. Math. Mod. & Meth. Appl. Sci. 16, 1–18 (2006)

    Article  MATH  Google Scholar 

  17. Murray, J.D.: Mathematical Biology, Chapter 1.7, pp. 29–33. Springer, Heidelberg (1993)

    Google Scholar 

  18. Norton, L., Simon, R.: Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317 (1977)

    Google Scholar 

  19. Norton, L., Simon, R.: The Norton-Simon hypothesis revisited. Cancer Treat. Rep. 70, 163–169(1986)

    Google Scholar 

  20. Retsky, M.: Metronomic chemotherapy was originally designed and first used in 1994 for early stage cancer - why is it taking so long to proceed? J. Bioequiv. Bioavailab. 3, 1195–1216 (2011)

    Google Scholar 

  21. Retsky, M.W., Swartzendruber, D.E., Wardwell, R.H., Bame. P.D.: Is Gompertzian or exponential kinetics a valid description of individual human cancer growth? Medical Hypotheses 33, 95-106(1990)

    Article  Google Scholar 

  22. Riesz, F., Sz.-Nagy, B.: Functional analysis. Frederick Ungar Publishing, New York (1965)

    Google Scholar 

  23. Schiller, J.H., Storer, B., Tutsch, K., Arzoomanian, R., Alberti, D., Feierabend, C., Spriggs, D.: Phase I trial of 3-hour infusion of paclitaxel with or without granulocyte colony-stimulating factor in patients with advanced cancer. J. Clin. Oncol. 12, 241–248 (1994)

    Article  Google Scholar 

  24. Sena, G., Onado, C., Cappella, P., Montalenti, F., Ubezio, P.: Measuring the complexity of cell cycle arrest and killing of drugs: kinetics of phase-specific effects induced by taxol. Cytometry 37, 113-124(1999)

    Article  Google Scholar 

  25. Shulgin, B., Stone, L., Agur, Z.: Pulse vaccination strategy in the sir endemic model. Bull. Math. Biol. 60, 1123–1148 (1998)

    Article  MATH  Google Scholar 

  26. Thompson, J.R., Brown, B.W.: Cancer Modelling. Marcel Dekker, New York (1987)

    Google Scholar 

  27. Ubezio, P., Tagliabue, G., Schechter, B., Agur, Z., Increasing 1-/0-D-Arabinofurano- sylcytosine efficacy by scheduled dosing interval based on direct measurement of bone marrow cell kinetics. Cancer Res. 54, 6446–6451 (1994)

    Google Scholar 

  28. Vainstein, V., Kirnasovsky. O.U., Kogan, Y., Agur, Z.: Strategies for cancer stem cell elimination: Insights from mathematical modeling. J. Theor. Biol. 298, 32–41 (2012)

    Article  MathSciNet  Google Scholar 

  29. Watters, J.W.: McLeod HL. Cancer pharmacogenomics: current and future applications. Biochim Biophys Acta. 1603, 99–111 (2003)

    Google Scholar 

  30. Webb, G.F.: Resonance Phenomena in cell population chemotherapy models. Rocky Mountain J. Math. 20, 1195-1216(1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Webb, G.F., Johnson, M.E.: Resonances in aged structured cell population models of periodic chemotherapy. Internat. J. Appl. Sci. Comp. 3, 57–67 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvia Agur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Agur, Z., Kheifetz, Y. (2012). Optimizing Cancer Chemotherapy: From Mathematical Theories to Clinical Treatment. In: d’Onofrio, A., Cerrai, P., Gandolfi, A. (eds) New Challenges for Cancer Systems Biomedicine. SIMAI Springer Series. Springer, Milano. https://doi.org/10.1007/978-88-470-2571-4_15

Download citation

Publish with us

Policies and ethics