Skip to main content

Abstract

Genetics plays an important role in the etiology of congenital heart defects (CHDs), as demonstrated by clinical, epidemiological, embryological, and molecular studies. In fact, the finding of inherited CHDs, the association of CHDs with extracardiac defects and genetic syndromes and increasing knowledge about disease-associated genes are shedding light onto the role of genetic factors in determing CHDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferencz C, Loffredo CA, Correa-Villasenor A, Wilson PD (1997) Genetic and environmental risk factors of major cardiovascular malformations. The Baltimore-Washington Infant Study 1981–1989. Futura Publishing Company Inc, Armonk, New York

    Google Scholar 

  2. Marino B, Digilio MC, Grazioli S et al (1996) Associated cardiac anomalies in isolated and syndromic patients with tetralogy of Fallot. Am J Cardiol 77:505-508

    Article  PubMed  CAS  Google Scholar 

  3. Digilio MC, Marino B, Grazioli S et al (1996) Comparison of occurrence of genetic syndromes in ventricular septal defect with pulmonic stenosis (classic tetralogy of Fallot) versus ventricular septal defect with pulmonic atresia. Am J Cardiol 77:1375-1376

    Article  PubMed  CAS  Google Scholar 

  4. Goldmuntz E, Geiger E, Benson W (2001) NKX2.5 mutations in patients with tetralogy of Fallot. Circulation 104:2565-2568

    Article  PubMed  CAS  Google Scholar 

  5. Roessler E, Ouspenskaia MV, Karkera JD et al (2008) Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 83:18-29

    Article  PubMed  CAS  Google Scholar 

  6. McElhinney DB, Geiger E, Blinder J et al (2003) Nkx2.3 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650-1655

    Article  PubMed  CAS  Google Scholar 

  7. Pizzuti A, Sarkozy A, Newton AL et al (2003) Mutations in ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Genet 22:372-377

    CAS  Google Scholar 

  8. Rauch R, Hofbeck M, Zweier C et al (2010) Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet 47:321-331

    Article  PubMed  CAS  Google Scholar 

  9. Bauer RC, Laney AO, Smith R et al (2010) Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutation 31:594-601

    Article  CAS  Google Scholar 

  10. Guida V, Chiappe F, Ferese R et al (2011) Novel and recurrent JAG1 mutations in patients with tetralogy of Fallot. Clin Genet 80:591-594

    Article  PubMed  CAS  Google Scholar 

  11. Marino B, Digilio MC (2000) Congenital heart disease and genetic syndromes: Correlation between cardiac phenotype and genotype. Cardiovasc Pathol 9:303-315

    Article  PubMed  CAS  Google Scholar 

  12. de la Cruz MV, Sanchez Gomez C, Arteaga MM, Arguello C (1977) Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123:661-686

    PubMed  CAS  Google Scholar 

  13. Waldo KL, Kumiski DH, Wallis KT et al (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179-3188

    PubMed  CAS  Google Scholar 

  14. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Developmental Biol 238:97-109

    Article  CAS  Google Scholar 

  15. Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261-268

    Article  PubMed  CAS  Google Scholar 

  16. Yelbuz TM, Waldo KL, Kumuski DH et al (2002) Shortened outflow tract leads to altered cardiac looping after neural crest ablation. Circulation 106:504-510

    Article  PubMed  Google Scholar 

  17. Waldo KL, Hutson MR, Stadt HA et al (2005) Cardial neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field. Dev Biol 281:66-77

    Article  PubMed  CAS  Google Scholar 

  18. Ward C, Stadt H, Hutson M, Kirby ML (2005) Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Developmental Biol 284:72-83

    Article  CAS  Google Scholar 

  19. Musewe NN, Alexander DJ, Teshima I et al (1990) Echocardiography evaluation of the spectrum of cardiac anomalies associated with trisomy 18 and 13. J Am Coll Cardiol 15:673-677

    Article  PubMed  CAS  Google Scholar 

  20. Karr SS, Brenner JI, Loffredo C et al (1992) Tetralogy of Fallot. The spectrum of severity in a regional study, 1981–1985. Am J Dis Child 146:121-124

    PubMed  CAS  Google Scholar 

  21. Marino B (1996) Patterns of congenital heart disease and associated cardiac anomalies in children with Down syndrome. In: Marino B, Pueschel SM (eds) Heart disease in persons with Down syndrome. Brookes, Baltimore, pp 33–40

    Google Scholar 

  22. Van Praagh S, Truman T, Firpo A et al (1989) Cardiac malformations in trisomy 18: A study of 41 postmortem cases. J Am Coll Cardiol 13:1586-1597

    Article  PubMed  CAS  Google Scholar 

  23. Marino B (1993) Congenital heart disease in patients with Down's syndrome: anatomic and genetic aspects. Biomed & Pharmacother 47:197-200

    Article  CAS  Google Scholar 

  24. Vergara P, Digilio MC, De Zorzi A et al (2006) Genetic heterogeneity and phenotypic anomalies in children with atrioventricular canal defect and tetralogy of Fallot. Clin Dysmorphol 15:65-70

    Article  PubMed  Google Scholar 

  25. Digilio MC, Marino B, Guccione P et al (1998) Deletion 8p sindrome. Am J Med Genet 75:534536

    Article  PubMed  CAS  Google Scholar 

  26. Giglio S, Graw SL, Gimelli G et al (2000) Deletion of a 5-cM region at chromosome 8p23 is associated with a spectrum of congenital heart defects. Circulation 102:432-437

    Article  PubMed  CAS  Google Scholar 

  27. Devriendt K, Matthijs G, Van Dael R et al (1999) Delineation of the critical deletion region for congenital heart defects, on chromosome 8p23.1. Am J Hum Genet 64:1119-1126

    Article  PubMed  CAS  Google Scholar 

  28. Ryan AK, Goodship JA, Wilson DI et al (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34:798804

    Article  PubMed  CAS  Google Scholar 

  29. McDonald-McGinn DM, Kirschner R, Goldmuntz E et al (1999) The Philadelphia story. The 22q11.2 deletion: report on 250 patients. Genet Couns 10:11-24

    PubMed  CAS  Google Scholar 

  30. Marino B, Digilio MC, Toscano A et al (2001) Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet Med 3:45-48

    Article  PubMed  CAS  Google Scholar 

  31. Goldmuntz E, Clark BJ, Mitchell LE et al (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 32:492-498

    Article  PubMed  CAS  Google Scholar 

  32. Momma K, Kondo C, Ando M et al (1995) Tetralogy of Fallot associated with chromosome 22q11 deletion. Am J Cardiol 76:618-621

    Article  PubMed  CAS  Google Scholar 

  33. Momma K, Kondo C, Matsuoka R (1996) Tetralogy of Fallot with pulmonary atresia associated with chromosome 22q11 deletion. J Am Coll Cardiol 27:198-202

    Article  PubMed  CAS  Google Scholar 

  34. Anaclerio S, Marino B, Carotti A et al (2001) Pulmonary atresia with ventricular septal defect: prevalence of deletion 22q11 in the different anatomic patterns. Ital Heart J 2:384-387

    PubMed  CAS  Google Scholar 

  35. Lindsay EA, Vitelli F, Su H et al (2001) Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97-101

    Article  PubMed  CAS  Google Scholar 

  36. Yagi H, Furutani Y, Hamada H et al (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366-1373

    Article  PubMed  CAS  Google Scholar 

  37. Amati F, Mari A, Digilio MC et al (1995) 22q11 deletions in isolated and syndromic patients with tetralogy of Fallot. Hum Genet 95:479-482

    Article  PubMed  CAS  Google Scholar 

  38. Digilio MC, Marino B, Giannotti A et al (1999) Guidelines for 22q11 deletion screening of patients with conotruncal defects. J Am Coll Cardiol 33:1746-1747

    Article  PubMed  CAS  Google Scholar 

  39. McElhinney DB, Krantz ID, Bason L et al (2002) Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 106:2567-2574

    Article  PubMed  Google Scholar 

  40. Loomes KM, Underkoffler LA, Morabito et al (1999) The expression of JAGGED1 in the developing mammalian heart correlates with cardiovascular disease in Alagille syndrome. Hum Molec Genet 8:2443-2449

    Article  PubMed  CAS  Google Scholar 

  41. Trip J, van Stuijvenberg M, Dikkers FG, Pijnenburg MW (2002) Unilateral CHARGE association. Eur J Pediatr 161:78-80

    Article  PubMed  Google Scholar 

  42. Botto L, Khoury MJ, Mastroiacovo P et al (1997) The spectrum of congenital anomalies of the VATER association: An international study. Am J Med Genet 71:8-15

    Article  PubMed  CAS  Google Scholar 

  43. Digilio MC, Calzolari F, Capolino R et al (2008) Congenital heart defects in patients with Oculo-Auriculo-Vertebral spectrum (Goldenhar syndrome). Am J Med Genet 146A:1815-1819

    Article  PubMed  Google Scholar 

  44. Sperling S, Grimm CH, Dunkel I et al (2005) Identification and functional analysis of CIT-ED2 mutations in patients with congenital heart defects. Hum Mutation 26:575-582

    Article  CAS  Google Scholar 

  45. Griffin HR, Topf A, Glen E et al (2010) Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart 96:1651-1655

    Article  PubMed  CAS  Google Scholar 

  46. Topf A, Griffin HR, Hall DH et al (2011) Gene screening of the secondary heart field network in tetralogy of Fallot patients. Heart 97(Suppl 1):A76 (Abstract)

    Article  Google Scholar 

  47. Guida V, Ferese R, Rocchetti M et al (2012) A variant in the carboxyl-terminus of connexin 40 alters GAP junctions and increases risk for tetralogy of Fallot (submitted)

    Google Scholar 

  48. Greenway SC, Pereira AC, Lin JC et al (2009) De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 41:931-935

    Article  PubMed  CAS  Google Scholar 

  49. Wang J, Xie XD, Zhou S et al (2011) The study of copy number variations in the regions of NOTCH1 among Chinese and TOF patients. Int J Cardiol 14:444-484

    Article  Google Scholar 

  50. Soemedi R, Topf A, Wilson IJ et al (2011) Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls. Hum Molec Genet (E-pub ahead of printing)

    Google Scholar 

  51. Digilio MC, Marino B, Giannotti A et al (1997) Recurrence risk figures for isolated tetralogy of Fallot after screening for 22q11 microdeletion. J Med Genet 34:188-190

    Article  PubMed  CAS  Google Scholar 

  52. Burn J, Brennan P, Little H et al (1998) Recurrence risks in offspring of adults with major heart defect: results from first cohort of British collaborative study. Lancet 351:311-316

    Article  PubMed  CAS  Google Scholar 

  53. Formigari R, Michielon G, Digilio MC et al (2009) Genetic syndromes and congenital heart defects: how is surgical management affected? Eur J Cardio-Thorac Surg 35:606-614

    Article  Google Scholar 

  54. Michielon G, Marino B, Formigari R et al (2006) Genetic syndromes and outcome after surgical correction of tetralogy of Fallot. Ann Thorac Surg 81:968-975

    Article  PubMed  Google Scholar 

  55. Michielon G, Marino B, Oricchio G et al (2009) Impact of Del22q11, trisomy 21, and other genetic syndromes on surgical outcome of conotruncal heart defects. J Thorac Cardiovasc Surg 138:565-570

    Article  PubMed  CAS  Google Scholar 

  56. Carotti A, Marino B, Di Donato RM (2003) Influence of chromosome 22q11.2 microdeletion on surgical outcome after treatment of tetralogy of Fallot with pulmonary atresia. J Thorac Cardiovasc Surg 126:1666-1667

    Article  PubMed  Google Scholar 

  57. Carotti A, Albanese SB, Filippelli S (2010) Determinants of outcome after surgical treatment of pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries. J Thorac Cardiovasc Surg 140:1092-1103

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Digilio, M.C., Dallapiccola, B., Marino, B. (2012). Genetics. In: Chessa, M., Giamberti, A. (eds) The Right Ventricle in Adults with Tetralogy of Fallot. Springer, Milano. https://doi.org/10.1007/978-88-470-2358-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2358-1_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2357-4

  • Online ISBN: 978-88-470-2358-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics