Skip to main content

Convex ordering of Esscher and minimal entropy martingale measures for discrete time models

  • Chapter

Abstract

We recall and extend some sufficient conditions for the convex comparison of martingale measures in a one period setting, based on the elasticity of the pricing kernel.

We show that the minimal entropy martingale measure (MEMM) and the Esscher martingale measure are comparable in the convex order, and which one is dominating depends on the sign of the risk premium on the underlying. If it is positive, then the MEMM gives a lower price to each convex payoff. We show how the comparison result can be extended to the multiperiod i.i.d. case and discuss the problems related to the general, non i.i.d. case, proving a Lemma that links one period comparison with multi period comparison under more general assumptions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Billingsley, P.: Probability and Measure, 3rd ed., Wiley (1995)

    Google Scholar 

  2. Bergenthum, J., Rüschendorf, L.: Comparison of option prices in semimartingale models, Adv. in Data Anal. and Classif. 10, 222–249 (2006)

    MATH  Google Scholar 

  3. Bergenthum, J., Rüschendorf, L.: Convex ordering criteria for Lévy processes, Fin. Stoch. 12, 143–173 (2007)

    Google Scholar 

  4. Cherny, A.S., Maslov, V.P.: On minimization and maximization of entropy in various disciplines, Theory Prob. Appl. 48(3), 447–464 (2004)

    Article  MathSciNet  Google Scholar 

  5. Courtois, C., Denuit, M.: Convex bounds on multiplicative processes, with applications to pricing in incomplete markets, Insur. Math. Econ. 42(1), 95–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Csiszar, I.: I- Divergence Geometry of Probability Distributions and Minimization Problems, Ann. Probab. 3(1), 146–158 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Franke, G., Stapleton, R., Subrahmanyam, M.: When are Options Overpriced: The Black-Scholes Model and Alternative Characterizations of the Pricing Kernel, Eur. Finance Rev. 3, 79–102 (1999)

    Article  MATH  Google Scholar 

  8. Frittelli, M.: The minimal entropy martingale mesaure and the valuation problem in incomplete markets, Math. Fin. 10, 39–52 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerber, H.U., Shiu, E.S.W.: Option pricing by Esscher transforms, Trans. Soc. of Actuar. 46, 51–92 (1994)

    Google Scholar 

  10. Henderson, V., Hobson, D., Howison, S., Kluge, T.: A comparison of option prices under different pricing measures in a stochastic volatility model with correlation, Rev. Deriv. Res. 8, 5–25 (2005)

    Article  MATH  Google Scholar 

  11. Huang, J.: Risk neutral probabilities and option bounds: a geometric approach, Lancaster University Management School Working paper n. 2004/052. Available at http://papers.ssrw.com/sol3/papers.cfm?abstract id = 621663 (2004)

  12. Jagannathan, R.: Call options and the risk of underlying security, J. Fin. Econ. 13(3), 425–434 (1984)

    Article  Google Scholar 

  13. Lukacs, E.: Characteristic functions, Griffin (1970)

    Google Scholar 

  14. Merton, R.C.: Theory of rational option pricing, Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)

    Article  MathSciNet  Google Scholar 

  15. Müller, A., Stoyan, S.: Comparison Methods for Stochastic Models and Risk, Wiley (2002)

    Google Scholar 

  16. Rotschild, M., Stiglitz J. E.: Increasing risk: I. A definition, J. Econ. Theory 20(3), 225–243 (1970)

    Article  Google Scholar 

  17. Rüschendorf, L.: On upper and lower prices in discrete time models, Proc. Steklov Inst. Math. 237, 134–139 (2002)

    Google Scholar 

  18. Shaked, M., Shantikumar, G. J.: Stochastic orders, 2nd ed., Springer (2006)

    Google Scholar 

  19. Shataev, O.V.: On a fair price of an option of European type, Commun. Moscow Math. Soc. 142, 1367–1369 (2001)

    Google Scholar 

  20. Shiryaev, A.N.: Essentials of Stochastic Finance: Facts, Models, Theory, World Scientific (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Bellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Bellini, F., Sgarra, C. (2012). Convex ordering of Esscher and minimal entropy martingale measures for discrete time models. In: Perna, C., Sibillo, M. (eds) Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer, Milano. https://doi.org/10.1007/978-88-470-2342-0_4

Download citation

Publish with us

Policies and ethics