Skip to main content

Corrosion Fatigue

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals

Abstract

It is rather difficult to establish a simple yet comprehensive picture of the combined effects of fatigue and corrosion. First of all it must be clear which one is happening first and which one is following. This can be done by checking the relative stress intensity factor thresholds. But even when fatigue and corrosion start as individual events they can combine feeding each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wadsworth, N.J., Hutchings, J.: Internal stresses and fatigue in metals. Phil. Mag. 3, 1154 (1958)

    Google Scholar 

  2. Shives, T.R., Bennet, J.A.: The effect of environment on the fatigue strength of four selected alloys. NASA Report CR-267, 2–22 (1965)

    Google Scholar 

  3. Bennet, J.A.: Effect of reaction with the atmosphere during fatigue in metals. In: Fatigue—An Interdisciplinary Approach, p. 209. Siracuse University Press (1964)

    Google Scholar 

  4. Wadsworth, N.J.: The influence of atmospheric corrosion on the fatigue limit of iron 0.5 % carbon. Phil. Mag. 6, 397 (1961)

    Google Scholar 

  5. Goodacre, R.: Internal stresses and fatigue in metals. Engineering 139, 457 (1935)

    Google Scholar 

  6. Frost, N.E.: The growth of fatigue cracks. Appl. Mater. Res. 3, 131 (1964)

    Google Scholar 

  7. Amzallag, C., Rabbe, P., Bathias, C., Benoit, D., Trushon, M.: Influence of various parameters on the determination of the fatigue crack arrest threshold. ASTM STP 738, 29–44 (1981)

    Google Scholar 

  8. Sarrazin-Baudoux, C., Lesterlin, S., Petit, J.: Atmospheric influence on fatigue crack propagation in titanium alloys at elevated temperature. ASTM STP 1297, 117–130 (1997)

    Google Scholar 

  9. Achilles, R.D., Bulloch, J.H.: The Influence of Frequency, Waveform and Environment on the fatigue crack growth behaviour of SA 508 RPV steel. In: Proceedings of the Second IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 1, pp. 379–422 (1986)

    Google Scholar 

  10. Imohf, E.J., Barsom, J.M.: Fatigue and corrosion-fatigue crack growth of 4340 steel at various yield strengths. Progress in flaw growth and fracture toughness testing. ASTM STP 536, 182–205 (1973)

    Google Scholar 

  11. Sprowls, D.O.: Evaluation of corrosion fatigue. ASM Metals Handbook, Corrosion 13, 245–282 (1992)

    Google Scholar 

  12. Barsom, J.M., Sovak, J.F., Imohf, E.: Corrosion fatigue crack propagation below KISCC in four high-yield strength steels. Laboratory Report 89.021-024(3), U.S. Steel Co. (1970)

    Google Scholar 

  13. Crooker, T.W., Lange, E.A.: Corrosion fatigue crack propagation for some new high strength structural steels. J. Basic Eng. Trans. ASME 91, 570–574 (1969)

    Google Scholar 

  14. Kondo, T., et al.: Fatigue crack propagation behavior of ASTM A 533 GrB Cl1 plate in an environment of high temperature primary grade nuclear reactor water. In: HSST 6th Annual Information Meeting, Paper 6 (1972)

    Google Scholar 

  15. Barsom, J.M., Rolfe, S.T.: Fracture and Fatigue Control in Structures. Application of Fracture Mechanics, p. 320. Prentice-Hall, Inc., New Jersey (1977)

    Google Scholar 

  16. Pao, P.S., Wei, W., Wei, R.P.: Environment-Sensitive Fracture of Engineering Materials, TMS-Time, p. 565 (1979)

    Google Scholar 

  17. Mager, T.R., Landes, J.D., McLoughlin, V., Moon, D.M.: The effect of low frequencies on the fatigue crack growth characteristic of A533 grade B class I plate in an environment of high-temperature primary grade nuclear reactor water. Oak Ridge, HSST Report 35 (1973)

    Google Scholar 

  18. Dawson, D.B., Pelloux, R.M.: Corrosion fatigue crack growth of titanium alloys in aqueous environments. Metall. Trans. A 5A, 723–731 (1974)

    Google Scholar 

  19. Iida, K., Kobayashi, H., Higuchi, M.: Predictive method of low cycle fatigue life of carbon and low alloy steels in high temperature water environments. In: Proceedings of the Second IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 2, pp. 385–409 (1986)

    Google Scholar 

  20. Van Der Sluys, W.A., Emanuelson, R.: Overview of data trends in cyclic crack growth Results in LWR environments. In: Proceedings of the Second IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 1, pp. 199–218 (1986)

    Google Scholar 

  21. Cullen, W.H.: Fatigue crack growth rates in pressure vessel and piping steels in LWR environment. USNRC Report NUREG/CR-4724 (1987)

    Google Scholar 

  22. Chiou, S., Wei, R.P.: Corrosion-fatigue cracking response of beta annealed Ti-6Al-4V Alloy in 3.5 % NaCl solution. NADC-83126-60, U.S. Naval Air Development Center (1984)

    Google Scholar 

  23. Bucci, R.J.: Environment enhanced fatigue and stress corrosion cracking of a titanium alloy plus a simple model for the assessment of environmental influence on fatigue behavior. PhD Dissertation, Lehigh University, Bethlehem (1970)

    Google Scholar 

  24. Banford, W.H., Moon, D.M., Ceschini, L.J.: Crack growth rate testing in reactor pressure vessel steels. In: Proceedings Fifth Water Reactor Safety Information Meeting, Gaithersburg MD, November (1977)

    Google Scholar 

  25. Amzallag, C., Bernard, J.L., Slama, G.: Effect of loading and metallurgical parameters on the fatigue crack growth rates of pressure vessels steels in PWR environment. In: International Symposium in Environmental Degradation of Materials in Nuclear Power—Power Reactors, Myrtle Beach, South Carolina, pp. 15–17, 22–25 Aug 1983

    Google Scholar 

  26. Atkinson, J.D., Bulloch, J.: The effect of bulk sulfur content on da/dN. Minutes of IGCGR Meeting, Akron OH (1984)

    Google Scholar 

  27. Banford, W.H., Jacko, R.J., Wilson, I.L.W., Ceschini, L.J.: The effect of material and environmental variables on corrosion fatigue crack growth in pressure vessel steels. NRC NUREG/CP-0058 4 (1984)

    Google Scholar 

  28. Kondo, T., Kuniya, J., Takaku, H., Arii, M., Kurihara, M.: Recent study on cyclic crack growth of reactor pressure boundary materials in high temperature water environment in Japan. In: Proceedings of the Second IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 1, pp. 219–249 (1986)

    Google Scholar 

  29. ASME XI, Appendix A, American Society of Mechanical Engineers (1986)

    Google Scholar 

  30. Tice, D.R., Atkinson, J.D., Scott, P.M.: Proceedings of the 2nd IAEA Specialist’s Meeting on Subcritical Crack Growth, Sendai, Japan, US NRC NUREG/CP 0067 1, pp. 251–282 (1986)

    Google Scholar 

  31. Scott, P.M., Truswell, A.R.: Proceedings of the IAEA Specialists’ Meeting on Subcritical Crack Growth, Freiburg, Germany, US NRC NUREG/CP 0044 1, p. 376 (1981)

    Google Scholar 

  32. Atkinson, J.D., Bulloch, J.H., Forrest, J.E.: A fractographic study of fatigue cracks produced in A533B pressure vessel steel exposed to simulated PWR primary water environment. In: Proceedings of the 2nd IAEA Specialist’s Meeting on Subcritical Crack Growth, Sendai, Japan, US NRC NUREG/CP 0067 1, p. 290 (1986)

    Google Scholar 

  33. Torronen, K., Hänninen, H., Cullen, W.H. Jr.: Mechanisms of environmental assisted cyclic crack growth of nuclear reactor pressure vessel steels. In: Proceedings of the IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0044 2, p. 42, Freiburg (1981)

    Google Scholar 

  34. Amzallag, C., Bernard, G.L., Slama, G.: French studies of cyclic crack growth behaviour of RPV steels in PWR environment. In: Proceedings of the 2nd IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 1, p. 305 (1985)

    Google Scholar 

  35. Torronen, K., Kemppainen, M., Hanninen, H.: Fractographic evaluation of specimens of A 533 B pressure vessel steels. Final Report of EPRI, Contract RP 1325-7, Report NP 3483 (1984)

    Google Scholar 

  36. Fontana, M.G.: Corrosion Engineering. McGraw-Hill, New York (1986)

    Google Scholar 

  37. Austen, I.M., Walker, E.F., May, M.J.: Factors affecting the rate of growth of cracks by corrosion-fatigue. Technical Report STF-6210/KE/18/802 (1976)

    Google Scholar 

  38. Speidel, M.O., Blackburn, M.J., Beck, T.R., Feeney, J.A.: Corrosion fatigue and stress corrosion crack growth in high strength aluminum alloys, magnesium alloys and titanium alloys exposed to aqueous solutions. In: Corrosion Fatigue, International Corrosion Conference Series NACE-2 (1972)

    Google Scholar 

  39. Gallagher, J.P., Sinclair, G.M.: Environmentally assisted fatigue crack growth rates in SAE 4340 steel. J. Basic Eng. Trans. ASME 21, 508 (1969)

    Google Scholar 

  40. Barsom, J.M.: Corrosion fatigue crack propagation below KISCC. Eng. Fract. Mech. 3(1), 15–18 (1971)

    Article  Google Scholar 

  41. Vosikovsky, O.: Fatigue-crack growth in an X-65 line-pipe steel at low cyclic frequencies in aqueous environments. Trans. ASME Series H 97, 298–305 (1975)

    Google Scholar 

  42. Wei, R.P., Landes, J.D.: Correlation between sustained load and fatigue crack growth in high strength steels. Mat. Res. Stand. ASTM 9, 25 (1969)

    Google Scholar 

  43. Austen, I.M., Walker, E.F., May, M.J.: Factors affecting the rate of growth of cracks by corrosion-fatigue. British Steel, Ref. 6210, Ke 18/802 (1978)

    Google Scholar 

  44. Walker, E.F., May, M.J., Irvine, K.J.: Mechanisms and control of crack growth in steels. Technical Report STF/85/76, 6210/KE/8/802 and STF/771, 6210/KE/8/802 (1976)

    Google Scholar 

  45. Van Der Sluys, W.A., Emanuelson, R.: Cyclic crack growth of reactor pressure vessel steels in light water reactor environment. Eng. Mater. Technol. The Institution of Mech. Eng. 4, 1–10, London (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Paolo Milella .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Milella, P.P. (2013). Corrosion Fatigue. In: Fatigue and Corrosion in Metals. Springer, Milano. https://doi.org/10.1007/978-88-470-2336-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2336-9_16

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2335-2

  • Online ISBN: 978-88-470-2336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics