Skip to main content

Fatigue in Welds

  • Chapter
  • First Online:
  • 8530 Accesses

Abstract

More than half a century has passed from World War II when welding heavily entered into the naval construction technique, in particular, often with catastrophic results and in the engineering practice, in general. Much has been learned and welding techniques improved. Yet, welds still remain the location where cracks are more likely to occur. The impact of such defects is enhanced by the heat treatment operated by welding on the base metal and residual stresses left around them. Since most of metallic structures today are welded, designer must be well acquainted with weld defects and their effects on fatigue strength of metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kou, S.: Welding Metallurgy. Wiley, New York (2003)

    Google Scholar 

  2. La Vecchia G.M.: Metallurgia e saldabilità. struttura del giunto saldato. istituto italiano della saldatura, IIS, Genova (2008)

    Google Scholar 

  3. Masubuchi K.: Control of distortion and shrinkage in welding. Weld. Res. Counc. Bull. 149 (1970)

    Google Scholar 

  4. UKAEA: An Assessment of the Integrity of PWR Pressure Vessels. 2nd Report by Dr. W. Marshall Study Group (1982)

    Google Scholar 

  5. Kanazawa, T., Oba, H., Susei, S.: The effect of welding residual stress upon brittle fracture propagation, report ii. Japan Soc. Naval Arch. 110, 359–368 (1961)

    Google Scholar 

  6. Masubuchi, K., Martin, D.C.: Investigation of residual stresses in steel weldments. Battelle Memorial Inst, Columbus (1998)

    Google Scholar 

  7. Kihara H., Masubuchi K., Kusuda T., Iida K.: IIW-X-219 (1959)

    Google Scholar 

  8. Nichols R.W.: The use of overstressing technique to reduce the risk of subsequent brittle fracture. Review prepared for commission X, IIW, X-409-67 E (1967)

    Google Scholar 

  9. Liljeblad R.: ASEA J. 23 (1937)

    Google Scholar 

  10. Kihara H., Masubuchi T., Iida K., Oba H.: Report to the IIW Commission X, X-218 (1959)

    Google Scholar 

  11. Harrison, T.C., Farnehough, G.D.: The influence of warm prestressing on the brittle fracture of structures containing sharp defects. Trans. Am. Soc. Mech. Engrs. 94(D), 373–386 (1972)

    Google Scholar 

  12. Loss F.J., Gray R.A. Jr., Hawtorne J.R.: Significance of warm prestressing to crack initiation during thermal shock. Naval Research Laboratory (1977)

    Google Scholar 

  13. Loss F.J., Gray R.A. Jr., Hawtorne J.R.: Investigation of warm prestressing for the case of small ∆T During a reactor LOCA. Naval Research Laboratory (1978)

    Google Scholar 

  14. McGowan J.J.: An assessment of the beneficial effects of warm prestressing on the fracture properties of nuclear reactor vessels under severe thermal Shock. Westinghouse nuclear energy systems, WCAP-9178 (1978)

    Google Scholar 

  15. Stonesifer R.B., Rybicki E.F., McCabe D.E.: Warm prestress modeling: Comparison of models and experimental results. Material engineering associates, NUREG/CR-5208, MEA-2305 (1989)

    Google Scholar 

  16. Loss F.J.: Structural integrity of water reactor pressure boundary components. Naval Research Laboratory, NRL/NUREG-351 (1977)

    Google Scholar 

  17. Maddox S.J.: An introduction to fatigue of welded joints, improving the fatigue strength of welded joints. TWI (1983)

    Google Scholar 

  18. Maddox, S.J.: The effect of plate thickness on the fatigue strength of fillet welds joints. Abington, Cambridge (1987)

    Google Scholar 

  19. Code of practice of fatigue design and assessment of steel structures, BS 7608, British Standard Institution, London (1993)

    Google Scholar 

  20. Gurney T.R: Fatigue of welded structures. Cambridge University Press (1979)

    Google Scholar 

  21. Maddox, S.J.: Fatigue strength of welded structures. Abington, Cambridge (1991)

    Google Scholar 

  22. Niu, X., Glinka, G.: The weld profile effect on stress intensity factor in weldments. Int. J. Fract. 35, 3–20 (1987)

    Google Scholar 

  23. Gordon J.R.: Improving the fatigue life of welded structures. Fatigue improvement seminar, American bureau of shipping (1993)

    Google Scholar 

  24. Shimokawa H., Takena K., Itoh F., Miki K.: Fatigue strength of large gasset joints of 800 MPa Class steel. Pro. JSCE 1 (1985)

    Google Scholar 

  25. Haangsen, P.J.: Improving the strength of welded joints. In: Almar-Naess, A. (ed.) Fatigue Handbook. Tapir, Trondheim (1985)

    Google Scholar 

  26. Kado S., et al.: Influence of the conditions in TIG dressing on the fatigue strength in welded high tensile strength steels. IIW Document XIII-771-75 (1975)

    Google Scholar 

  27. Ambriz, R.R., Mesmacque, G., Benhamena, A., Ruiz, A., Amrouche, A., López, V.H.: Fatigue crack growth behavior oin 6061–T6 aluminum alloy welds obtained by modified indirect electric ARc technique. Sci. Technol. Weld. Joining 15(6), 514–521 (2010)

    Article  Google Scholar 

  28. Clarck W.G. Jr.: Fatigue crack growth characteristics of ASTM A 533 grade B, class 1 steel base plate, weld metal and heat-affected-zone. Westinghouse research report 69-7E7-BFPWR-R2 (1969)

    Google Scholar 

  29. Parry, M., Nordberg, H., Herzberg, R.W.: Fatigue crack propagation in A514 base plate and welded joints. Weld. J. 51(10), 485–490 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Paolo Milella .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Milella, P.P. (2013). Fatigue in Welds. In: Fatigue and Corrosion in Metals. Springer, Milano. https://doi.org/10.1007/978-88-470-2336-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2336-9_12

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2335-2

  • Online ISBN: 978-88-470-2336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics