Skip to main content

Crack Tip Plastic Zone Effect on Fatigue Crack Propagation

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals
  • 8530 Accesses

Abstract

The Paris-Erdogan equation can predict fatigue crack propagation only under particular conditions. It fails when R≠0 or under variable amplitude loads or with small cracks and cannot predict overload retardation etc. in all these cases fatigue crack propagation depends on what is actually happening at the crack tip in the plastic zone. Therefore, the study of the plastic zone behavior is fundamental to address the fatigue crack propagation issue and adjourn the Paris-Erdogan equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith, A.A.: The phenomena of rupture and flow in solids. Roy. Soc. Trans., Ser A 221, 163–198 (1920)

    Article  Google Scholar 

  2. Milella, P.P.: A fatigue crack growth theory based upon energy considerations, pp. 484–508. IAEA Specialists’ Meeting on Subcritical Crack Growth, Freiburg, Federal Republic of Germany (1981)

    Google Scholar 

  3. Milella, P.P.: A fatigue crack growth theory based upon energy considerations. further development on small crack behavior and R ratio effect. Fatigue and fracture mechanics, Twenty-Ninth Volume. ASTM-STP 1332 (1999)

    Google Scholar 

  4. Wessel, E.T., Clarck, W.G. Jr.: Fracture prevention procedure for heavy section components. ASM conference on fracture control (1970)

    Google Scholar 

  5. Vecchio, R.S., Crompton, J.S., Hertzberg, R.W.: The influence of specimen geometry on near threshold fatigue crack growth. Fatigue Fract. Engng. Mater. Struct. 10(4), 333–342 (1987)

    Article  Google Scholar 

  6. Amzallag, C., Rabbe, P., Bathias, C., Benoit, D., Truchon, M.: Influence of variou parameters on the determination of the fatigue crack arrest threshold. ASTM STP , American Society for Testing and Materials, 738, 29–44 (1981)

    Google Scholar 

  7. Ogawa, T., Tokaji, K., Ohya, K.: The effect of microstructure and fracture surface roughness on fatigue crack propagation in a Ti-6Al-4 V alloy. Fatigue Fract. Engng. Mater. Struct. 16(9), 973–982 (1993)

    Article  Google Scholar 

  8. Basic Fracture Mechanics for Nuclear Applications. Westinghouse Course on Fracture Mechanics to ENEA-ENEL, Rome, Westinghouse data from W.G. Clark Jr., Italy, 6–8 March (1978)

    Google Scholar 

  9. Tanaka, K.: Mechanics and micromechanics of fatigue crack propagation. Am. Soc. Test Mater, ASTM STP 1020, 151–183 (1989)

    Google Scholar 

  10. Rolfe, S.T., Barsom, J.M.: Fracture and Fatigue Control in Structure. Prentice-Hall, Englewood Cliff (1977)

    Google Scholar 

  11. Klesnil, M., Lukas, P.: Effects of stress cycle asymmetry on fatigue crack growth. Mater. Sci. Eng. 9, 231–240 (1972)

    Article  Google Scholar 

  12. Hopkinns, S.W., Rau Jr, C.A.: Prediction of structural crack growth behavior under fatigue loading. ASTM STP 738, 255–270 (1981)

    Google Scholar 

  13. Walker, E.K.: The Effect of Stress Ratio During Crack propagation and fatigue for 2024-T3 and 7075-T6 Aluminum. ASTM STP, American Society for Testing and Materials, Philadelphia, 462 (1970)

    Google Scholar 

  14. Crooker. T.W.: Effect of tension-compression cycling on fatigue crack growth in high-strength alloy. Naval Research Laboratory Report 7220, Washington DC (1971)

    Google Scholar 

  15. Crooker, T.W., Krauser, D.J.: The Influence of Stress Ratio and Stress Level on Fatigue Crack growth Rates in 140-Ksi HY Steel. Naval Research Laboratory Report, Washington DC (1972)

    Google Scholar 

  16. Miller, M.S., Gallagher, J.P.: An analysis of several fatigue crack growth rate (FCGR) description. ASTM STP 738, 205–251 (1981)

    Google Scholar 

  17. Elber, W.: Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2, 37–45 (1970)

    Article  Google Scholar 

  18. Gomez, M.P., Ernst, H., Vazquez, J.: On the validity of erber, s results on fatigue crack closure for 2024–T3 aluminum. Int. J. Fract. 12, 178–180 (1976)

    Google Scholar 

  19. Clerivet, A., Bathias, C.: Study of crack tip opening under cyclic loading taking into account the environment and R s. Eng. Fract. Mech. 12, 599–611 (1979)

    Article  Google Scholar 

  20. Schijve, J.: Some formulas for the crack opening stress level. Eng. Fract. Mech. 14, 461–465 (1981)

    Article  Google Scholar 

  21. Castro, D.E., Marci, G., Munz, D.: A generalized concept of a fatigue threshold. Fatigue Fract. Eng. Mater. Struct. 10(4), 305–314 (1987)

    Article  Google Scholar 

  22. Zhang, S., Marissen, R., Shulte, K., Trautmann, K.K., Nowak, H., Schijve, J.: Crack propagation studies on Al 7475 on the basis of constant amplitude and selective variable amplitude loading histories. Fatigue Fract. Eng. Mater. Struct. 10(4), 315–332 (1987)

    Article  Google Scholar 

  23. Newman, J.C. Jr.: American Society for Testing and Materials, ASTM STP , Methods and Models for Predicting Fatigue Crack Growth under Random Loading,748, 55–84 (1981)

    Google Scholar 

  24. Newman Jr, J.C.: Prediction of fatigue crack growth under variable-amplitude using a closure model. Am. Soc. Test. Mater., ASTM STP 761, 255–277 (1982)

    Google Scholar 

  25. Suresh, S., Ritchie, R.O.: Propagation of short fatigue cracks. Int. Metall. Rev. 29, 455–476 (1984)

    Google Scholar 

  26. Rice, J.R.: The mechanism of crack tip deformation and extension by fatigue. fatigue crack propagation. ASTM STP 415, 247–309 (1967)

    Google Scholar 

  27. Hardrath, H.F., McEvily, A.T.: Engineering aspects of fatigue crack propagation. proceeding of crack propagation symposium 1, Cranfield, England (1961)

    Google Scholar 

  28. Schijve, J.: Significance of Fatigue Cracks in Micro-Range and Macro-Range. Fatigue Crack Propagation. ASTM STP, 415 (1967)

    Google Scholar 

  29. McMillan, J.C., Pelloux, R.M.N.: Fatigue crack propagation under program and random loads. Fatigue crack propagation. ASTM STP, 415 (1967)

    Google Scholar 

  30. Von Euw, E.F.J., Hertzberg, R.W., Roberts, R.: Delay effects in fatigue crack propagation. ASTM STP 513, 230–259 (1972)

    Google Scholar 

  31. Wheeler, O.E.: Spectrum loading and crack growth. General dynamic report FZM 5602, Fort Worth (1970)

    Google Scholar 

  32. Wheeler, O.E.: Spectrum loading and crack growth. J. Basic Eng. 44, 181–186 (1972)

    Article  Google Scholar 

  33. Schijve, J.: Fatigue Crack Propagation in light Alloy Sheet Material and Structures. Pergamon Press, Oxford (1961)

    Google Scholar 

  34. Cotterill, P.J., Knott, J.F.: Overload retardation of fatigue crack growth in 9 %Cr 1 %Mo steel at elevated temperatures. Fatigue Fract. Eng. Mater. Struct. 16(1), 53–70 (1993)

    Article  Google Scholar 

  35. Elber, W.: The significance of fatigue crack closure. ASTM STP 486, 230–242 (1971)

    Google Scholar 

  36. Bernard, P.J., Lindley, T.C., Richard, C.E.: Mechanisms of overload retardation during fatigue crack propagation. ASTM STP 595, 78–97 (1976)

    Google Scholar 

  37. Schijve, J.: The accumulation of fatigue damage in aircraft materials and structures. AGARD conference, symposium on random load fatigue, 118, 3–82 (1972)

    Google Scholar 

  38. Kim, S., Tai, W.: Retardation and arrest of fatigue crack growth in AISI 4340 steel by introducing rest periods and overload. Fatigue Fract. Eng. Mater. Struct. 15(6), 519–530 (1992)

    Article  Google Scholar 

  39. Pearson, S.: Initiation of fatigue cracks in commercial aluminum alloys and the subsequent propagation of very short cracks. Eng. Fract. Mech. 7, 235 (1975)

    Article  Google Scholar 

  40. Kitagawa, H., Takahashi, S.: Applicability of fracture mechanics to very small cracks or the cracks in the very early stage. Proceedings of the 2nd International Conference Mechanical Behavior of Materials, p. 627, Boston (1976)

    Google Scholar 

  41. Lankford, J.: Initiation and early growth of fatigue cracks in high strength steel. Eng. Fract. Mech. 9, 617–624 (1977)

    Article  Google Scholar 

  42. Taylor, D., Knott, J.F.: Fatigue crack propagation behaviour of short cracks; the effect of microstructure. Fatigue Eng. Mater. Struct. 4, 147–155 (1981)

    Article  Google Scholar 

  43. Brown, C.W., Hicks, M.A.: A study of short fatigue crack growth behavior in titanium alloy IMI 685. Fatigue Eng. Mater. Struct. 6, 46–67 (1983)

    Article  Google Scholar 

  44. Clement, P., Angeli, J.P., Pineau, A.: Short crack behavior in nodular cast iron. Fatigue Eng. Mater. Struct. 7(4), 251–265 (1984)

    Article  Google Scholar 

  45. Yokobori, T., Kuribayashi, H., Kawagishi, M., Takeuchi, N.: Study of initiation and propagation of fatigue cracks in tempered martensitic high strength steel by plastic-replication method and scanning microscope. Rep. of the Research Inst. For Strength and Fracture of the Materials, Tohoku University, Sendai, Japan, pp. 1–23 (1971)

    Google Scholar 

  46. Lankford, J.: Initiation and early growth of fatigue cracks in high strength steels. Eng. Fract. Mech. 9, 617–624 (1977)

    Article  Google Scholar 

  47. Lankford, J., Cook, T.S., Sheldon, G.P.: Fatigue micro cracks growth in nickel base superalloy. Int. J. Fract. 17, 143–155 (1981)

    Article  Google Scholar 

  48. Lankford, J.: The influence of microstructure on the growth of small fatigue cracks. Fatigue Fract. Eng. Mater. Struct. 8(2), 161–175 (1985)

    Article  Google Scholar 

  49. Lankford, J.: The effect of the environment on the growth of small fatigue cracks. Fatigue Eng. Mater. Struct. 6, 15–31 (1983)

    Article  Google Scholar 

  50. Barsom, J.M.: Fatigue crack growth under variable amplitude loading in ASTM A514 grade B steel. ASTM STP 536, 147–167 (1973)

    Google Scholar 

  51. Wei, R.P., Shih, T.T.: Delay in fatigue crack growth. Int. J. Fract. 10(1), 77–85 (1974)

    Article  Google Scholar 

  52. Wheeler, O.E.: Spectrum loading and crack growth. genaral dynamics report FZM 5602 (1970)

    Google Scholar 

  53. Willemborg, J., Engle, R.M., Wood, H.A.: A crack growth retardation model using an effected stress concept. technical memorandum 71-1-FBR, Air force flight dynamics laboratory (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Paolo Milella .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Milella, P.P. (2013). Crack Tip Plastic Zone Effect on Fatigue Crack Propagation. In: Fatigue and Corrosion in Metals. Springer, Milano. https://doi.org/10.1007/978-88-470-2336-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2336-9_11

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2335-2

  • Online ISBN: 978-88-470-2336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics