Skip to main content

Alveolar micromechanics

  • Chapter
  • 299 Accesses

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

Abstract

The mechanical behavior of the air spaces in the periphery of the lung is the result of a delicate balance of forces acting on the tissue scaffold of lung parenchyma. Static and dynamic properties of such a complex system have been an important field of research for many years. Alveolar space micromechanics have important physiological implications in terms of mechanical interdependence, alveolar stability, and the maintenance of a gas exchanging surface in constant contact with air. The mechanical behavior of such system has to allow the expansion of the alveolar surface at physiological rates at a low energy cost, and without interfering with the exchange process. I will describe how the structure and mechanics of the alveolar space are particularly optimized to reach these goals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson TA (1981) The relations among recoil pressure, surface area and surface tension in the lung. J Appl Physiol Respirat Environ Exercise Physiol 50:921–926

    CAS  Google Scholar 

  2. Mead J (1961) Mechanical properties of lungs. Physiol Rev 41:281–330

    PubMed  CAS  Google Scholar 

  3. Schürch S, Bachofen H, Weibel ER (1985) Alveolar surface tensions in excised rabbit lungs: effects of temperature. Respir Physiol 62:31–45

    Article  PubMed  Google Scholar 

  4. Bachofen H, Wilson TA (1991) Micromechanics of the acinus and the alveolar wall. In: Crystal RG, West JB et al (eds) The Lung: scientific foundations. Vol. I. Raven Press, New York, pp 809–819

    Google Scholar 

  5. Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175:1125–1127

    Article  PubMed  CAS  Google Scholar 

  6. Von Neergard K (1929) Neue Auffassungen über einen Grundbegriff der Atemmechanik: Die Retraktionskraft der Lunge, Abhangig von der Oberflächensprannung in den Alveolen. Z Gesamte Exp Med 66:373–394

    Article  Google Scholar 

  7. Hoppin FG, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (ed) Bioengineering aspects of the lung. Marcel Dekker, New York, pp 83–157

    Google Scholar 

  8. Schiirch S, Goerke J, Clements JA (1976) Direct determination of surface tension in the lung. Proc Natl Acad Sei 73:4698–4702

    Article  Google Scholar 

  9. Schiirch S, Bachofen H, Goerke J, Possmayer F (1989) A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J Appl Physiol 67:2389–2396

    Google Scholar 

  10. Wilson TA, Bachofen H (1982) A model of mechanical structure of alveolar duct. J Appl Physiol 53:1512–1520

    PubMed  CAS  Google Scholar 

  11. Smith JC, Stamenovic D (1986) Surface forces in the lungs. I Alveolar surface tension- lung volume relationships. J Appl Physiol 60:1341–1350

    PubMed  CAS  Google Scholar 

  12. Setnikar I, Meschia G (1952) Propieta elastiche del polmone e di modelli meccaniche. Arch Eisiol 52:288–302

    Google Scholar 

  13. Karlinsky JB, Snyder GL, Franzlau C, Stone PJ, Hoppin FG Jr (1960) In vitro effects of elastase and collagenase on mechanical properties of hamster lungs. Am Rev Respir Dis 82:186–194

    Google Scholar 

  14. Moretto A, Dallaire M, Romero P, Ludwig M (1994) Effect of elastase on oscillation mechanics of lung parenchymal strips. J Appl Physiol 77:1623–1629

    PubMed  CAS  Google Scholar 

  15. Romero PV, Canete C, Lopez-Aguilar J, Romero FJ (1998) Elasticity, viscosity and plasticity in lung parenchyma. In: Milic-Emili J (ed) Applied physiology in respiratory mechanics. Springer-Verlag, Berlin Heidelberg New York, pp 57–72

    Google Scholar 

  16. Weibel ER, Crystal RG (1991) Structural organization of the pulmonary interstitium. In: Crystal RG, West JB et al (eds) The lung: scientific foundations. Vol I. Raven Press, New York, pp 369–380

    Google Scholar 

  17. Hildebrandt J (1969) Dynamic properties of air-filled excised cat lungs determined by liquid pletismograph. J Appl Physiol 27:246–250

    PubMed  CAS  Google Scholar 

  18. Romero PV, Robatto FM, Simard S, Ludwig MS (1992) Lung tissue behavior during methacholine challenge in rabbits in vivo. J Appl Physiol 73:207–212

    PubMed  CAS  Google Scholar 

  19. Fredberg JJ, Bunk D, Ingenito E, Shore SA (1993) Tissue resistance and the contractile state of lung parenchyma. J Appl Physiol 74:1387–1397

    PubMed  CAS  Google Scholar 

  20. Navajas D, Maksym GN, Bates JHT (1995) Dynamic viscoelastic nonlinearity of lung parenchymal tissue. J Appl Physiol 79:348–356

    PubMed  CAS  Google Scholar 

  21. Romero F J, Pastor A, Lopez, J, Romero PV (1998) A recruitment-based rheological model for mechanical behavior of soft tissues. Biorheology 35:17–35

    Article  PubMed  CAS  Google Scholar 

  22. Maksym GN, Bates JHT (1997) A distributed nonlinear model of lung tissue elasticity. J Appl Physiol 82:32–41

    PubMed  CAS  Google Scholar 

  23. Takayanagi M (1963) Viscoelastic properties of crystalline polymers. Mem Fac Eng Kyushu Univ 33 (l):41–96

    Google Scholar 

  24. Stamenovic D, Smith JC (1986) Surface forces in lungs IL Microstructural mechanics and lung stability J Appl Physiol 60:1351–1357

    PubMed  CAS  Google Scholar 

  25. Stamenovic D, Wilson TA (1992) Parenchymal stability J Appl Physiol 73:596–602

    PubMed  CAS  Google Scholar 

  26. Romero PV, Lopez Aguilar J, Blanch L (1998) Pulmonary mechanics beyond peripheral airways. In: Milic-Emili J (ed) Applied physiology in respiratory mechanics. Springer-Verlag, Berlin Heidelberg New York, pp 199–210

    Google Scholar 

  27. Romero PV, Rodriguez B, Lopez-Aguilar J, Manresa F (1998) Parallel airways inho- mogeneity and lung tissue mechanics in transition to constricted state in rabbits. J Appl Physiol 84:1040–1047

    PubMed  CAS  Google Scholar 

  28. Hubmayr RD, Hill M, Wilson TA (1996) Nonuniform expansion of constricted dog lungs. J Appl Physiol 80:522–530

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Romero, P.V. (1999). Alveolar micromechanics. In: Milic-Emili, J., Lucangelo, U., Pesenti, A., Zin, W.A. (eds) Basics of Respiratory Mechanics and Artificial Ventilation. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2273-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2273-7_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0046-9

  • Online ISBN: 978-88-470-2273-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics