Skip to main content

La moderna radioterapia: verso la radioterapia adattativa guidata da immagini biologiche

  • Chapter
  • 927 Accesses

Riassunto

Il fine ultimo della radioterapia (RT) è l’eradicazione della totalità delle cellule tumorali clonogeniche (cellule staminali), con contenimento del danno ai tessuti irradiati entro livelli accettabili. A tale scopo le recenti innovazioni nell’ambito delle tecniche di radioterapia si sono tradotte in un miglioramento nella selezione e nel contornamento dei volumi di interesse e nella messa a punto di piani di trattamento per l’ottimizzazione del calcolo delle dosi. Inoltre, si è aggiunta la disponibilità di nuovi macchinari dotati di congegni per l’acquisizione di immagini e controllati da computer molto veloci, che consentono una maggiore precisione nell’erogazione delle dosi. I trattamenti convenzionali sono stati sostituiti da tecniche di radioterapia altamente conformazionale, quali la radioterapia a intensità modulata (IMRT) e la terapia ad arco con modulazione d’intensità (IMAT), che consentono di individualizzare la distribuzione della dose rispetto all’esatta morfologia del tumore, con un migliore risparmio dei tessuti sani e degli organi a rischio circostanti.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560

    Article  PubMed  CAS  Google Scholar 

  2. Bentzen SM (2005) Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol 6:112–117

    Article  PubMed  Google Scholar 

  3. Keall P (2004) 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol 14:81–90

    Article  PubMed  Google Scholar 

  4. Lee NY, Terezakis SA (2008) Intensity-modulated radiation therapy. J Surg Oncol 97:691–696

    Article  PubMed  CAS  Google Scholar 

  5. Fenwick JD, Nahum AE, Malik ZI et al (2009) Escalation and intensification of radiotherapy for stage III non-small cell lung cancer: opportunities for treatment improvement Clin Oncol 21:343–360

    Article  CAS  Google Scholar 

  6. Taylor A, Powell ME (2008) Conformai and intensitymodulated radiotherapy for cervical cancer. Clin Oncol (R Coll Radiol) 20:417–425

    Article  CAS  Google Scholar 

  7. Kong FM, Zhao L, Hayman JA (2006) The role of radiation therapy in thoracic tumors. Hematol Oncol Clin North Am 20:363–400 Review

    Article  PubMed  Google Scholar 

  8. Barker JLJ, Garden AS, Ang KK et al (2004) Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated ct/linear accelerator system. Int J Radiat Oncol Biol Phys 59:960–970

    Article  PubMed  Google Scholar 

  9. Geets X, Daisne J, Tomsej M et al (2006) Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre-and per-treatment studies. Radiother Oncol 78:291–297

    Article  PubMed  Google Scholar 

  10. Geets X, Tomsej M, Lee JA et al (2007) Adaptive biological image-guided imrt with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 85:105–115

    Article  PubMed  Google Scholar 

  11. Vásquez Osorio EM, Hoogeman MS, Al-Mamgani A et al (2008) Local anatomic changes in parotid and submandibular glands during radiotherapy for oropharynx cancer and correlation with dose, studied in detail with nonngid registration. Int J Radiat Oncol Biol Phys 70:875–882

    Article  PubMed  Google Scholar 

  12. Castadot P, Geets X, Lee JA et al (2010) Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation. Radiother Oncol 95:209–217

    Article  PubMed  Google Scholar 

  13. Han C, Chen Y, Liu A et al (2008) Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys 70:1256–1262

    Article  PubMed  Google Scholar 

  14. Robar JL, Day A, Clancey J et al (2007) Spatial and dosimetric variability of organs at risk in head-and-neck intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 68:1121–1130

    Article  PubMed  Google Scholar 

  15. Daisne J, Duprez T, Weynand B et al (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233:93–100

    Article  PubMed  Google Scholar 

  16. Troost EG, Schinagl DA, Bussink J et al (2010) Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med 51:66–76

    Article  PubMed  Google Scholar 

  17. Chao KSC, Ozyigit G, Tran BN et al (2003) Patterns of failure in patients receiving definitive and postoperative imrt for head-and-neck cancer. Int J Radiat Oncol Biol Phys 55:312–321

    Article  PubMed  Google Scholar 

  18. Madani I, Duthoy W, Derie C et al (2007) Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 68:126–135

    Article  PubMed  Google Scholar 

  19. Dirix P, Vandecaveye V, De Keyzer F et al (2009) Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)ffdg pet, (18)f-fluoromisonidazole pet, diffusion-weighted mri, and dynamic contrast-enhanced mri. J Nucl Med 50:1020–1027

    Article  PubMed  Google Scholar 

  20. Zhao S, Kuge Y, Mochizuki T et al (2005) Biologic correlates of intratumoral heterogeneity in 18f-fdg distribution with regional expression of glucose transporters and hexokinase-ii in experimental tumor. J Nucl Med 46:675–682

    PubMed  CAS  Google Scholar 

  21. Weber WA, Avril N, Schwaiger M (1999) Relevance of positron emission tomography (pet) in oncology. Strahlenther Onkol 175:356–373

    Article  PubMed  CAS  Google Scholar 

  22. Minn H, Clavo AC, Grénman R, Wahl RL (1995) In vitro comparison of cell proliferation kinetics and uptake of triiated fluorodeoxyglucose and l-methionine in squamouscell carcinoma of the head and neck. J Nucl Med 36:252–258

    PubMed  CAS  Google Scholar 

  23. Geets X, Daisne J, Grégoire V et al (2004) Role of 11-cmethinonine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with fdg-pet andct. Radiother Oncol 71:267–273

    Article  PubMed  CAS  Google Scholar 

  24. Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [f-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12:5435–5441

    Article  PubMed  CAS  Google Scholar 

  25. Rischin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of [18f]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of trans-tasman radiation oncology group study 98.02. J Clin Oncol 24:2098–2104

    Article  PubMed  Google Scholar 

  26. Eschmann S, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18f-misonidazole pet in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46:253–260

    PubMed  Google Scholar 

  27. Popple RA, Ove R, Shen S (2002) Tumor control probability for selective boosting of hypoxic subvolumes, including the effect of reoxygenation. Int J Radiat Oncol Biol Phys 54:921–927

    Article  PubMed  Google Scholar 

  28. Mees G, Dierckx R, Vangestel C, Van de Wiele C (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36:1674–1686

    Article  PubMed  CAS  Google Scholar 

  29. Trott KR, Baumann M (2000) Which methods to minimize the time factor are substantiated by the evidence, which are unproven? Strahlenther Onko 176:472–174

    Article  CAS  Google Scholar 

  30. Been LB, Suurmeijer AJH, Cobben DCP et al (2004) [18f]flt-pet in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–7162

    Article  PubMed  Google Scholar 

  31. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [f-18]flt and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  32. Sherley JL, Kelly TJ (1988) Regulation of human thymidine kinase during the cell cycle. J Biol Chem 263:8350–8358

    PubMed  CAS  Google Scholar 

  33. Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80S Review

    Article  PubMed  CAS  Google Scholar 

  34. Mishani E, Abourbeh G, Eiblmaier M, Anderson C (2008) Imaging of EGFR and EGFR tyrosine kinase overexpression in tumors by nuclear medicine modalities. Curr Pharm Des 14:2983–2998

    Article  PubMed  CAS  Google Scholar 

  35. Fowler JF, Chappell R (2000) Non-small cell lung tumors repopulate rapidly during radiation therapy. Int J Radiat Oncol Biol Phys 46:516–517

    Article  PubMed  CAS  Google Scholar 

  36. Fowler JF, Tome WA, Fenwick JD, Mehta MP (2004) A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys 60:1241–1256

    Article  PubMed  Google Scholar 

  37. Eschmann SM, Paulsen F, Bedeshem C et al (2007) Hypoxia-unaging with (18)f-misonidazole and pet: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol 83:406–410

    Article  PubMed  CAS  Google Scholar 

  38. Thorwarth D, Eschmann S, Paulsen F, Alber M (2007) A model of reoxygenation dynamics of head-and-neck tumors based on serial 18f-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 68:515–521

    Article  PubMed  CAS  Google Scholar 

  39. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945

    Article  PubMed  Google Scholar 

  40. Geets X, Lee JA, Bol A et al (2007) A gradient-based method for segmenting fdg-pet images: methodology and validation. Eur J Nucl Med Mol Imaging 34:1427–1438

    Article  PubMed  Google Scholar 

  41. Christian N, Lee JA, Bol A et al (2009) The limitation of pet imaging for biological adaptive-imrt assessed in animal models. Radiother Oncol 91:101–106

    Article  PubMed  Google Scholar 

  42. Mihaylov IB, Lerma FA, Fatyga M, Siebers JV (2007) Quantification of the impact of mlc modeling and tissue heterogeneities on dynamic imrt dose calculations. Med Phys 34:1244–1252

    Article  PubMed  CAS  Google Scholar 

  43. Vanderstraeten B, Duthoy W, De Gersem W et al (2006) [18f]fluoro-deoxy-glucose positron emission tomography ([18f]fdg-pet) voxel intensity-based intensity-modulated radiation therapy (imrt) for head and neck cancer. Radiother Oncol 79:249–258

    Article  PubMed  CAS  Google Scholar 

  44. Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: cu-atsm-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49:1171–1182

    Article  PubMed  CAS  Google Scholar 

  45. Grosu A, Souvatzoglou M, Röper B et al (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69:541–551

    Article  PubMed  CAS  Google Scholar 

  46. Lee NY, Mechalakos JG, Nehmeh S et al (2008) Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 70:2–13

    Article  PubMed  CAS  Google Scholar 

  47. Thorwarth D, Eschmann S, Paulsen F, Alber M (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68:291–300

    Article  PubMed  Google Scholar 

  48. Troost EG, Bussink J, Oyen WJ, Kaanders JH (2009) 18F-FDG and 18F-FLT do not discriminate between reactive and metastatic lymph nodes in oral cancer. J Nucl Med 50:490–491

    Article  PubMed  Google Scholar 

  49. Troost EG, Bussink J, Hoffmann AL et al (2010) 18FLT-PET-CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 51:866–874

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Geets, X., Grégoire, V. (2011). La moderna radioterapia: verso la radioterapia adattativa guidata da immagini biologiche. In: Tumori della testa e del collo. Springer, Milano. https://doi.org/10.1007/978-88-470-1806-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1806-8_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1805-1

  • Online ISBN: 978-88-470-1806-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics