Skip to main content

Experimental Models of Mixed Cryoglobulinemia

  • Chapter
  • First Online:
  • 686 Accesses

Abstract

Only a few animal models of cryoglobulinemic glomerulonephritis have been characterized. Most murine models of mixed cryoglobulinemia occur in the context of autoimmune dysregulation and most resemble diseases such as systemic lupus erythematosus. The thymic stromal lymphopoietin transgenic mouse model of type III mixed cryoglobulinemia currently best replicates the features of cryoglobulinemic membranoproliferative glomerulonephritis (MPGN) as it occurs in humans with mixed cryoglobulinemia, particularly humans infected with hepatitis C virus. This model has been used to test the importance of the inhibitory Fc receptor FcRllb in limiting the severity of disease expression, in demonstrating the deleterious effect of infiltrating monocyte/macrophage populations that is a characteristic feature of this type of glomerulonephritis, and in demonstrating the potential reversibility of MPGN with appropriate therapeutic interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kidney Disease: Improving Global Outcomes (KDIGO) (2008) KDIGO clinical practice guidelines for the prevention, diagnosis, evaluation, and treatment of hepatitis c in chronic kidney disease. Kidney Int Suppl (109):S1–S99

    Google Scholar 

  2. Agnello V (1997) The etiology and pathophysiology of mixed cryoglobulinemia secondary to hepatitis C virus infection. Springer Semin Immunopathol 19:111–129

    Article  PubMed  CAS  Google Scholar 

  3. Alpers CE, Smith KD (2008) Cryoglobulinemia and renal disease. Curr Opin Nephrol Hypertens 17:243–249

    Article  PubMed  Google Scholar 

  4. D’Amico G (1998) Renal involvement in hepatitis C infection: cryoglobulinemic glomerulonephritis. Kidney Int 54:650–671

    Article  PubMed  Google Scholar 

  5. Hoofnagle JH (2002) Course and outcome of hepatitis C. Hepatology 36:S21–S29

    Article  PubMed  Google Scholar 

  6. Johnson RJ, Gretch DR, Yamabe H et al (1993) Membrano­proliferative glomerulonephritis associated with hepatitis C virus infection. N Engl J Med 328:465–470

    Article  PubMed  CAS  Google Scholar 

  7. Johnson RJ, Willson R, Yamabe H et al (1994) Renal manifestations of hepatitis C virus infection. Kidney Int 46:1255–1263

    Article  PubMed  CAS  Google Scholar 

  8. Kamar N, Izopet J, Alric L et al (2008) Hepatitis C virus-related kidney disease: an overview. Clin Nephrol 69:149–160

    PubMed  CAS  Google Scholar 

  9. Roccatello D, Fornasieri A, Giachino O et al (2007) Multicenter study on hepatitis C virus-related cryoglobulinemic glomerulonephritis. Am J Kidney Dis 49:69–82

    Article  PubMed  CAS  Google Scholar 

  10. D’Amico G, Fornasieri A (1995) Cryoglobulinemic glomerulonephritis: a membranoproliferative glomerulonephritis induced by hepatitis C virus. Am J Kidney Dis 25:361–369

    Article  PubMed  Google Scholar 

  11. Smith KD, Alpers CE (2005) Pathogenic mechanisms in membranoproliferative glomerulonephritis. Curr Opin Nephrol Hypertens 14:396–403

    Article  PubMed  CAS  Google Scholar 

  12. Barth H, Robinet E, Liang TJ et al (2008) Mouse models for the study of HCV infection and virus-host interactions. J Hepatol 49:134–142

    Article  PubMed  CAS  Google Scholar 

  13. Brass V, Moradpour D, Blum HE (2007) Hepatitis C virus infection: in vivo and in vitro models. J Viral Hepat 14(Suppl 1):64–67

    Article  PubMed  Google Scholar 

  14. Guidotti LG, Chisari FV (2006) Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 1:23–61

    Article  PubMed  CAS  Google Scholar 

  15. Boonstra A, van der Laan LJ, Vanwolleghem T et al (2009) Experimental models for hepatitis C viral infection. Hepatology 50:1646–1655

    Article  PubMed  CAS  Google Scholar 

  16. Ploss A, Rice CM (2009) Towards a small animal model for hepatitis C. EMBO Rep 10:1220–1227

    Article  PubMed  CAS  Google Scholar 

  17. Kikuchi S, Pastore Y, Fossati-Jimack L et al (2002) A ­transgenic mouse model of autoimmune glomerulonephritis and necrotizing arteritis associated with cryoglobulinemia. J Immunol 169:4644–4650

    PubMed  CAS  Google Scholar 

  18. Moll S, Schaeren-Wiemers N, Wohlwend A et al (1996) Protease nexin 1 in the murine kidney: glomerular ­localization and up-regulation in glomerulopathies. Kidney Int 50:1936–1945

    Article  PubMed  CAS  Google Scholar 

  19. Pastore Y, Lajaunias F, Kuroki A et al (2001) An experimental model of cryoglobulin-associated vasculitis in mice. Springer Semin Immunopathol 23:315–329

    Article  PubMed  CAS  Google Scholar 

  20. Guo S, Kowalewska J, Wietecha TA et al (2008) Renin-angiotensin system blockade is renoprotective in immune complex-mediated glomerulonephritis. J Am Soc Nephrol 19:1168–1176

    Article  PubMed  CAS  Google Scholar 

  21. Guo S, Muhlfeld AS, Wietecha TA et al (2009) Deletion of activating Fcgamma receptors does not confer protection in murine cryoglobulinemia-associated membranoproliferative glomerulonephritis. Am J Pathol 175:107–118

    Article  PubMed  Google Scholar 

  22. Iyoda M, Hudkins KL, Becker-Herman S et al (2009) Imatinib suppresses cryoglobulinemia and secondary membranoproliferative glomerulonephritis. J Am Soc Nephrol 20:68–77

    Article  PubMed  CAS  Google Scholar 

  23. Iyoda M, Hudkins KL, Wietecha TA et al (2007) All-trans-retinoic acid aggravates cryoglobulin-associated membranoproliferative glomerulonephritis in mice. Nephrol Dial Transplant 22:3451–3461

    Article  PubMed  CAS  Google Scholar 

  24. Muhlfeld AS, Segerer S, Hudkins K et al (2003) Deletion of the Fcgamma receptor iib in thymic stromal lymphopoietin transgenic mice aggravates membranoproliferative glomerulonephritis. Am J Pathol 163:1127–1136

    Article  PubMed  CAS  Google Scholar 

  25. Muhlfeld AS, Segerer S, Hudkins K et al (2004) Over­expression of complement inhibitor Crry does not prevent cryoglobulin-associated membranoproliferative glomerulonephritis. Kidney Int 65:1214–1223

    Article  PubMed  CAS  Google Scholar 

  26. Taneda S, Segerer S, Hudkins KL et al (2001) Cryoglobu­linemic glomerulonephritis in thymic stromal lymphopoietin transgenic mice. Am J Pathol 159:2355–2369

    Article  PubMed  CAS  Google Scholar 

  27. Ziegler SF, Artis D (2010) Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 11:289–293

    Article  PubMed  CAS  Google Scholar 

  28. Ziegler SF, Liu YJ (2006) Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat Immunol 7:709–714

    Article  PubMed  CAS  Google Scholar 

  29. Turnberg D, Cook HT (2005) Complement and glomerulonephritis: new insights. Curr Opin Nephrol Hypertens 14:223–228

    Article  PubMed  CAS  Google Scholar 

  30. Quigg RJ, He C, Lim A et al (1998) Transgenic mice overexpressing the complement inhibitor Crry as a soluble protein are protected from antibody-induced glomerular injury. J Exp Med 188:1321–1331

    Article  PubMed  CAS  Google Scholar 

  31. Bao L, Haas M, Boackle SA et al (2002) Transgenic expression of a soluble complement inhibitor protects against renal disease and promotes survival in MRL/lpr mice. J Immunol 168:3601–3607

    PubMed  CAS  Google Scholar 

  32. Holers VM, Thurman JM (2004) The alternative pathway of complement in disease: opportunities for therapeutic targeting. Mol Immunol 41:147–152

    Article  PubMed  CAS  Google Scholar 

  33. Thurman JM, Holers VM (2006) The central role of the alternative complement pathway in human disease. J Immunol 176:1305–1310

    PubMed  CAS  Google Scholar 

  34. Wietecha TA, Hudkins KL, Iyoda M et al (2007) Inhibition of complement pathways by combined overexpression of the murine protein Crry and the deletion of factor b in thymic stromal lymphopoietin mice aggravates cryoglobulin-associated membranoproliferative glomerulonephritis. American Society of Nephrology Annual Meeting, San Francisco, CA. J Am Soc Nephrol 18:411A

    Google Scholar 

  35. Wietecha TW, Hudkins KL, Iyoda M et al (2006) Deletion of the murine factor B in thymic stromal lymphopoietin transgenic mice aggravates cryoglobulin-associated membranoproliferative glomerulonephritis. American Society of Nephrology Annual Meeting. San Diego, CA. J Am Soc Nephrol 17:510A

    Google Scholar 

  36. Couser WG (2003) Complement inhibitors and glomerulonephritis: are we there yet? J Am Soc Nephrol 14:815–818

    Article  PubMed  Google Scholar 

  37. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47

    Article  PubMed  CAS  Google Scholar 

  38. Nimmerjahn F, Ravetch JV (2007) Fc-receptors as regulators of immunity. Adv Immunol 96:179–204

    Article  PubMed  CAS  Google Scholar 

  39. Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054

    Article  PubMed  CAS  Google Scholar 

  40. Nakamura A, Yuasa T, Ujike A et al (2000) Fcgamma receptor iib-deficient mice develop goodpasture’s syndrome upon immunization with type iv collagen: a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 191:899–906

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki Y, Shirato I, Okumura K et al (1998) Distinct contribution of Fc receptors and angiotensin ii-dependent pathways in anti-GBM glomerulonephritis. Kidney Int 54:1166–1174

    Article  PubMed  CAS  Google Scholar 

  42. Park SY, Ueda S, Ohno H et al (1998) Resistance of Fc receptor- deficient mice to fatal glomerulonephritis. J Clin Invest 102:1229–1238

    Article  PubMed  CAS  Google Scholar 

  43. Tarzi RM, Davies KA, Robson MG et al (2002) Nephrotoxic nephritis is mediated by Fcgamma receptors on circulating leukocytes and not intrinsic renal cells. Kidney Int 62:2087–2096

    Article  PubMed  CAS  Google Scholar 

  44. Ellsworth JL, Maurer M, Harder B et al (2008) Targeting immune complex-mediated hypersensitivity with recombinant soluble human FcgammaRIA (CD64A). J Immunol 180:580–589

    PubMed  CAS  Google Scholar 

  45. Woodle ES, Xu D, Zivin RA et al (1999) Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68:608–616

    Article  PubMed  CAS  Google Scholar 

  46. Marino M, Ruvo M, De Falco S et al (2000) Prevention of systemic lupus erythematosus in MRL/lpr mice by ­administration of an immunoglobulin-binding peptide. Nat Biotechnol 18:735–739

    Article  PubMed  CAS  Google Scholar 

  47. Anthony RM, Nimmerjahn F, Ashline DJ et al (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376

    Article  PubMed  CAS  Google Scholar 

  48. Kaveri SV, Lacroix-Desmazes S, Bayry J (2008) The antiinflammatory IgG. N Engl J Med 359:307–309

    Article  PubMed  CAS  Google Scholar 

  49. Kowalewska J, Muhlfeld AS, Hudkins KL et al (2007) Thymic stromal lymphopoietin transgenic mice develop cryoglobulinemia and hepatitis with similarities to human hepatitis c liver disease. Am J Pathol 170:981–989

    Article  PubMed  CAS  Google Scholar 

  50. Banas MC, Banas B, Hudkins KL et al (2008) TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol 19:704–713

    Article  PubMed  CAS  Google Scholar 

  51. Johnson GB, Brunn GJ, Platt JL (2003) Activation of mammalian toll-like receptors by endogenous agonists. Crit Rev Immunol 23:15–44

    Article  PubMed  CAS  Google Scholar 

  52. Taneda S, Hudkins KL, Cui Y et al (2003) Growth factor expression in a murine model of cryoglobulinemia. Kidney Int 63:576–590

    Article  PubMed  CAS  Google Scholar 

  53. Banas MC, Hudkins KL, Wietecha TA et al (2006) Treatment of experimental membranoproliferative glomerulonephritis with a neutralizing anti-TGF-beta1 antibody. American Society of Nephrology Annual Meeting, San Diego, CA. J Am Soc Nephrol 17:179A

    Google Scholar 

  54. Kowalewska J, Hudkins KL, Taneda S et al (2004) Treatment with PDGF r-beta antagonist does not ameliorate cryoglobulin-associated membraphoproliferative glomerulonephritis in thymic stromal lymphopoietin (TSLP) transgenic mice. American Society of Nephrology Annual Meeting, St Louis, MO. J Am Soc Nephrol 15:698A

    Google Scholar 

  55. Segerer S, Hudkins KL, Taneda S et al (2002) Oral interferon-alpha treatment of mice with cryoglobulinemic glomerulonephritis. Am J Kidney Dis 39:876–888

    Article  PubMed  CAS  Google Scholar 

  56. Guo S, Wietecha T, Hudkins K (2008) CD 14 is a mediator of kidney injury in murine cryoglobulinemia-associated membranoproliferative glomerulonephritis (MPGN), American Society of Nephrology Annual Meeting, Philadelphia, 2008

    Google Scholar 

  57. Kobayashi T, Wietecha T, Hudkins KL et al (2010) CD 14 mediates inflammation and kidney injury of MPGN in the TSLP model cryoglobulinemic glomerulonephritis independent of TLR4: American Society of Nephrology Annual Meeting, Denver, 2010

    Google Scholar 

Download references

Acknowledgements

The work reported here was supported by grants from the US National Institutes of Health (DK68802) and an unrestricted grant from the Genzyme Renal Innovations Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Alpers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Alpers, C.E., Wietecha, T.A., Hudkins, K.L. (2012). Experimental Models of Mixed Cryoglobulinemia. In: Dammacco, F. (eds) HCV Infection and Cryoglobulinemia. Springer, Milano. https://doi.org/10.1007/978-88-470-1705-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1705-4_18

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1704-7

  • Online ISBN: 978-88-470-1705-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics