Skip to main content

Synthetic Thyroid Hormone and Thyroid Hormone Analogues for Treatment of Heart Failure

  • Chapter
  • 967 Accesses

Abstract

Heart failure (HF) should be seen in a unique scenario of altered systemic homeostasis, in which heart dysfunction, peripheral organ dysfunction, and derangement of the neuroendocrine and immune systems represent chronic crosstalking between stress stimuli, with continuous activation of the stress response. The thyroid hormone (TH) system is profoundly involved in cardiovascular and systemic homeostasis. In HF, the most frequent alteration of TH metabolism is a low-triiodothyronine state, which may participate directly in progression of HF. Initial results have shown that TH replacement therapy in patients with HF improves cardiac performance, hemodynamic and exercise performance. It also induces deactivation of the neuroendocrine profile, as a result of the significant reductions in vasoconstrictor/sodium-retaining norepinephrine and aldosterone. It in the plasma levels of their counterpart, N-terminal pro B-type natriuretic peptide (NT-proBNP). Depending on the pathophysiology of the HF, two strategies of TH replacement therapy have been suggested: (1) the cardiosystemic strategy, which involves administration of synthetic T4 or T3, and (2) the cardioselective one, using TH analogues, in particular 3,5-diiodothyropropionic acid (DITPA). The rationale of these two approaches is based on the pathophysiology of HF progression, which is linked to progressive impairment of systolic-diastolic cardiac function, but also to systemic disturbance, which frequently progresses independently of deteriorating cardiac function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seta YJ, Shan K, Bozkurt B et al (1996) Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 2:243–249

    PubMed  CAS  Google Scholar 

  2. Blum A, Miller H (1998) Role of cytokines in heart failure. Am Heart J 135:181–186

    PubMed  CAS  Google Scholar 

  3. Torre-Amione G, Kapadia S, Benedict C et al (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    PubMed  CAS  Google Scholar 

  4. Finkel MS, Oddis CV, Jacob TD et al (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    PubMed  CAS  Google Scholar 

  5. Pagani FD, Baker LS, His C et al (1992) Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest 90:389–398

    PubMed  CAS  Google Scholar 

  6. Torre-Amione G, Kapadia S, Lee J et al (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 27:1201–1206

    PubMed  CAS  Google Scholar 

  7. Tsutamoto T, Hisanaga T, Wada A et al (1998) Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398

    PubMed  CAS  Google Scholar 

  8. Rauchhaus M, Doehner W, Francis DP et al (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067

    PubMed  CAS  Google Scholar 

  9. Damman KJ, Navis G, Smilde TD et al (2007) Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail 13:599–608

    PubMed  Google Scholar 

  10. Dries DL, Exner DV, Domanski MJ, et al (2000) The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol 35:681–689

    PubMed  CAS  Google Scholar 

  11. Hillege HL, Nitsch D, Pfeffer MA et al (2006) Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 113:671–678

    PubMed  Google Scholar 

  12. Palazzuoli A, Gallotta M, Iovine F et al (2008) Anaemia in heart failure: a common interaction with renal insufficiency called the cardio-renal anaemia syndrome. Int J Clin Pract 62:281–286

    PubMed  CAS  Google Scholar 

  13. Tang YD, Stuart DK (2008) The prevalence of anemia in chronic heart failure and its impact on the clinical outcomes. Heart Fail Rev 13:387–392

    PubMed  Google Scholar 

  14. Tang WH, Tong W, Jain A et al (2008) Evaluation and long-term prognosis of new-onset, transient, and persistent anemia in ambulatory patients with chronic heart failure. J Am Coll Cardiol 51:569–576

    PubMed  Google Scholar 

  15. De Silva R, Rigby AS, Witte K et al (2006) Anemia, renal dysfunction, and their interaction in patients with chronic heart failure. Am J Cardiol 98:391–398

    PubMed  Google Scholar 

  16. Pelle AJ, Gidron YY, Szabó BM et al (2008) Psychological predictors of prognosis in chronic heart failure. J Card Fail 14:341–350

    PubMed  Google Scholar 

  17. Macchia A, Monte S, Pellegrini F et al (2008) Depression worsens outcomes in elderly patients with heart failure: an analysis of 48,117 patients in a community setting. Eur J Heart Fail 10:714–721

    PubMed  Google Scholar 

  18. McEwen BS, Stellar E (1993) Stress and the individual. Mechanisms leading to disease. Arch Intern Med 153:2093–20101

    PubMed  CAS  Google Scholar 

  19. McEwan BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189

    Google Scholar 

  20. Mann DL, Kent RL, Parsons B et al (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790–804

    PubMed  CAS  Google Scholar 

  21. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509

    PubMed  CAS  Google Scholar 

  22. Kahaly, G.J. Dillmann WH (2005) Thyroid hormone action in the heart. Endocrine Rev 26:704–728

    CAS  Google Scholar 

  23. Davis PJ, Davis FB (2002) Nongenomic actions of thyroid hormone on the heart [review]. Thyroid 12:459–466

    PubMed  CAS  Google Scholar 

  24. Napoli R, Guardasole V, Angelini V et al (2007) Acute effects of triiodothyronine on endothelial function in human subjects. J Clin Endocrinol Metab 92:250–254

    PubMed  CAS  Google Scholar 

  25. Napoli R, Biondi B, Guardasole V et al (2008) Enhancement of vascular endothelial function by recombinant human thyrotropin. J Clin Endocrinol Metab 93:1959–1963

    PubMed  CAS  Google Scholar 

  26. Den Hollander JG, Wulkan RW, Mantel MJ et al (2005) Correlation between severity of thyroid dysfunction and renal function. Clin Endocrinol 62:423–427

    Google Scholar 

  27. Zoccali C, Benedetto F, Mallamaci F et al (2006) Low triiodothyronine and cardiomyopathy in patients with endstage renal disease. J Hypertens 24:2039–2046

    Article  PubMed  CAS  Google Scholar 

  28. Zoccali C (2006) Asymmetric dimethylarginine in endstage renal disease patients: a biomarker modifiable by calcium blockade and angiotensin II antagonism? Kidney Int 70:523–528

    PubMed  CAS  Google Scholar 

  29. Samuels MH (2008) Cognitive function in untreated hypothyroidism and hyperthyroidism. Curr Opin Endocrinol Diabetes Obes 15:429–433

    PubMed  Google Scholar 

  30. Gulseren S, Gulseren L, Hekimsoy Z et al (2006) Depression, anxiety, health-related quality of life, and disability in patients with overt and subclinical thyroid dysfunction. Arch Med Res 37:133–139

    PubMed  Google Scholar 

  31. Bunevicius R, Varoneckas G, Prange AJ Jr et al (2006) Depression and thyroid axis function in coronary artery disease: impact of cardiac impairment and gender. Clin Cardiol 29:170–174

    PubMed  Google Scholar 

  32. Silva JE, Bianco SD (2008) Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid 18:157–165

    PubMed  CAS  Google Scholar 

  33. Bumgarner JR, Ramkumar V, Stiles GL (1989) Altered thyroid status regulates the adipocyte A1 adenosine receptor-adenylate cyclase system. Life Sci 44:1705–1712

    PubMed  CAS  Google Scholar 

  34. Silva JE, Larsen PR (1983) Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature 305:712–713

    PubMed  CAS  Google Scholar 

  35. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML. (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-betal in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81

    PubMed  CAS  Google Scholar 

  36. Carneiro-Ramos MS, Diniz GP, Almeida J et al (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223

    PubMed  CAS  Google Scholar 

  37. Vergaro G, Emdin M (2008) Cardiac angiotensin receptor expression in hypothyroidism: back to fetal gene programme? J Physiol 1:7–8

    Google Scholar 

  38. Kinugawa K, Wayne A, Minobe BS et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart. Evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094

    PubMed  CAS  Google Scholar 

  39. Boelen A, Platvoet-Ter Schiphorst MC, Wiersinga WM (1993) Association between serum interleukin-6 and serum 3,5,3?-triiodothyronine in nonthyroidal illness. J Clin Endocrinol Metab 77:1695–1699

    PubMed  CAS  Google Scholar 

  40. Papanas N, Papatheodorou K, Papazoglou D et al (2008) Post-thyroidectomy thyroxine replacement dose in patients with or without compensated heart failure: the role of cytokines. Cytokine 41:121–126

    PubMed  CAS  Google Scholar 

  41. Bartalena L, Bogazzi F, Brogioni S et al (1998) Role of cytokines in the pathogenesis of the euthyroid sick syndrome. Eur J Endocrinol 138:603–614

    PubMed  CAS  Google Scholar 

  42. Kohno M, Horio T, Yasunari K et al (1993) Stimulation of brain natriuretic peptide release from the heart by thyroid hormone. Metabolism 42:1059–1064

    PubMed  CAS  Google Scholar 

  43. Liang F, Webb P, Marimuthu A et al (2003) Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 278:15073–15083

    PubMed  CAS  Google Scholar 

  44. Ertugrul DT, Gursoy A, Sahin M et al (2008) Evaluation of brain natriuretic peptide levels in hyperthyroidism and hypothyroidism. J Natl Med Assoc 100:401–405

    PubMed  Google Scholar 

  45. Ripoli A, Pingitore A, Favilli B et al (2005) Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol 45:439–445

    PubMed  Google Scholar 

  46. Caraccio N, Natali A, Sironi A et al (2005) Muscle metabolism and exercise tolerance in subclinical hypothyroidism: a controlled trial of levothyroxine. J Clin Endocrinol Metab 90:4057–4062

    PubMed  CAS  Google Scholar 

  47. Iervasi G, Molinaro S, Landi P et al (2007) Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch Intern Med 167:1526–1532

    PubMed  Google Scholar 

  48. Chopra IJ (1997) Euthyroid sick syndrome: is it a misnomer? J Clin Endocrinol Metab 82:329–334

    PubMed  CAS  Google Scholar 

  49. De Groot LJ (1999) Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab 84:151–164

    PubMed  Google Scholar 

  50. Tang YD, Kuzman JA, Said S et al (2005) Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation 112:3122–3130

    PubMed  CAS  Google Scholar 

  51. Hamilton MA, Stevenson LW, Luu M et al (1990) Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol 16:91–95

    Article  PubMed  CAS  Google Scholar 

  52. Opasich C, Pacini F, Ambrosino N et al (1996) Sick euthyroid syndrome in patients with moderate-to-severe chronic heart failure. Eur Heart J 17:1860–1866

    PubMed  CAS  Google Scholar 

  53. Pingitore A, Landi P, Taddei MC et al (2005) Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 118:132–136

    PubMed  CAS  Google Scholar 

  54. Kozdag G, Ural D, Vural A et al (2005) Relation between free triiodothyronine/free thyroxine ratio, echocardiographic parameters and mortality in dilated cardiomyopathy. Eur J Heart Fail 7:113–118

    PubMed  CAS  Google Scholar 

  55. Narula J, Haider N, Arbustini E et al (2006) Mechanisms of disease: apoptosis in heart failure — seeing hope in death. Nat Clin Pract Cardiovasc Med 3:681–688

    PubMed  CAS  Google Scholar 

  56. Sharov VG, Kostin S, Todor A et al (2005) Expression of cytoskeletal, linkage and extracellular proteins in failing dog myocardium. Heart Fail Rev 10:297–303

    PubMed  CAS  Google Scholar 

  57. Rosca MG, Vazquez EJ, Kerner J, et al (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39

    PubMed  CAS  Google Scholar 

  58. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    PubMed  CAS  Google Scholar 

  59. Liu PP, Mak S, Stewart DJ (1999) Potential role of the microvasculature in progression of heart failure. Am J Cardiol 84:23L–26L

    PubMed  CAS  Google Scholar 

  60. Forini F, Paolicchi A, Pizzorusso T et al (2001) 3,5,3?-Triiodothyronine deprivation affects phenotype and intracellular [Ca2+]i of human cardiomyocytes in culture. Cardiovasc Res 51:322–330

    PubMed  CAS  Google Scholar 

  61. Pingitore A, Galli E, Barison A et al (2008) Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab 93:1351–1358

    PubMed  CAS  Google Scholar 

  62. Khalife WI, Tang YD, Kuzman JA et al (2005) Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289:H2409–H2415

    PubMed  CAS  Google Scholar 

  63. Bauab RC, Perone D, Castro AV et al (2005) Low triiodothyronine (T3) or reverse triiodothyronine (rT3) syndrome modifies gene expression in rats with congestive heart failure. Endocr Res 31:397–405

    PubMed  CAS  Google Scholar 

  64. Kopecky J, Houstek J, Szarska E, et al (1986) Thyroxine 5?-deiodinase in brown adipose tissue of myopathic hamsters. Am J Physiol 251:E8–E13

    PubMed  CAS  Google Scholar 

  65. Mann DL (1999) Mechanism and model in heart failure. Circulation 100:999–1008

    PubMed  CAS  Google Scholar 

  66. Glennon PE, Sudgen PH, Pool-Wilson PA (1995) Cellular mechanisms of cardiac hypertrophy. Br Heart J 73:443–447

    Google Scholar 

  67. Hein S, Kostin S, Heling A et al (2000) The role of the cytoskeleton in heart failure. Cardiovasc Res 45:273–278

    PubMed  CAS  Google Scholar 

  68. Kato T, Muraski J, Chen Y et al (2005) Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest 115:2716–2730

    PubMed  CAS  Google Scholar 

  69. Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672

    PubMed  CAS  Google Scholar 

  70. Kuzman JA, Vogelsang KA, Thomas TA et al (2005) L-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 39:251–258

    PubMed  CAS  Google Scholar 

  71. Braun MU, LaRosée P, Schön S et al (2002) Differential regulation of cardiac protein kinase C isozyme expression after aortic banding in rat. Cardiovasc Res 56:52–63

    PubMed  CAS  Google Scholar 

  72. Steinberg SF, Goldberg M, Rybin VO (1995) Protein kinase C isoform diversity in the heart. J Mol Cell Cardiol 27:141–153

    PubMed  CAS  Google Scholar 

  73. Rybin V, Steinberg SF (1996) Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. Circ Res 79:388–398

    PubMed  CAS  Google Scholar 

  74. Inagaki K, Koyanagi T, Berry NC et al (2008) Pharmacological inhibition of epsilon-protein kinase C attenuates cardiac fibrosis and dysfunction in hypertension-induced heart failure. Hypertension 51:1565–1569

    PubMed  CAS  Google Scholar 

  75. Ledda-Columbano GM, Molotzu F, Pibiri M et al (2006) Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes. FASEB J 20:87–94

    PubMed  CAS  Google Scholar 

  76. Sawyer DB, Colucci WS (2000) Mitochondrial oxidative stress in heart failure: “oxygen wastage” revisited. Circ Res 86:119–120

    PubMed  CAS  Google Scholar 

  77. Ide T, Tsutsui H, Hayashidani S et al (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535

    PubMed  CAS  Google Scholar 

  78. Wang J, Wilhelmsson H, Graff C et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137

    PubMed  CAS  Google Scholar 

  79. Garnier A, Fortin D, Delomenie C et al (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551:491–501

    PubMed  CAS  Google Scholar 

  80. Montoya J, Perez-Martos A, Garstka HL et al (1997) Regulation of mitochondrial trans-cription by mitochondrial transcription factor A. Mol Cell Biochem 174:227–230

    PubMed  CAS  Google Scholar 

  81. Ikeuchi M, Matsusaka H, Kang D et al (2005) Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112:683–690

    PubMed  CAS  Google Scholar 

  82. Forini S, Lionetti V, Sabatino L et al (2008) Long-term L-triiodothyronine treatment drives myocardial adaptive mechanisms dependent on mitochondrial function and enhances cardiac repair in failing rat hearts. Proceedings of 13th International Congress of Endocrinology, Rio De Janeiro, Brazil (OP37)

    Google Scholar 

  83. Klemperer JD, Zelano J, Helm RE et al (1995) Triiodothyronine improves left ventricular function without oxygen wasting effects after global hypothermic ischemia. J Thorac Cardiovasc Surg 109:457–465

    PubMed  CAS  Google Scholar 

  84. Ojamaa K, Klemperer JD, Klein I (1996) Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 6:505–512

    PubMed  CAS  Google Scholar 

  85. Park KW, Dai HB, Ojamaa K et al (1997) The direct vasomotor effect of thyroid hormones on rat skeletal muscle resistance arteries. Anesth Analg 85:734–738

    PubMed  CAS  Google Scholar 

  86. Colantuoni A, Marchiafava PL, Lapi D et al (2005) Effects of tetraiodothyronine and triiodothyronine on hamster cheek pouch microcirculation. Am J Physiol Heart Circ Physiol 288:H1931–1936

    PubMed  CAS  Google Scholar 

  87. Tomanek RJ, Doty MK, Sandra A (1998) Early coronary angiogenesis in response to thyroxine: growth characteristics and up-regulation of basic fibroblast growth factor. Circ Res 82:587–593

    PubMed  CAS  Google Scholar 

  88. Wang X, Zheng W, Christensen LP et al (2003) DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. Am J Physiol Heart Circ Physiol 284:H613–H618

    PubMed  CAS  Google Scholar 

  89. Zheng W, Weiss RM, Wang X et al (2004) DITPA stimulates arteriolar growth and modifies myocardial postinfarction remodeling. Am J Physiol Heart Circ Physiol 286:H1994–H2000

    PubMed  CAS  Google Scholar 

  90. Liu Q, Clanachan AS, Lopaschuk GD (1998) Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Physiol 275:E392–E399

    PubMed  CAS  Google Scholar 

  91. Kiss E, Jakab G, Kranias EG et al (1994) Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res 75:245–251

    PubMed  CAS  Google Scholar 

  92. Pantos C, Mourouzis I, Markakis K et al (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339

    PubMed  Google Scholar 

  93. Ito K, Nakayama M, Hasan F et al (2003) Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts. Circulation 107:1176–1182

    PubMed  Google Scholar 

  94. Minatoya Y, Ito K, Kagaya Y et al (2007) Depressed contractile reserve and impaired calcium handling of cardiac myocytes from chronically unloaded hearts are ameliorated with the administration of physiological treatment dose of T3 in rats. Acta Physiol 189:221–231

    CAS  Google Scholar 

  95. Jiang M, Xu A, Tokmakejian S et al (2000) Thyroid hormone-induced overexpression of functional ryanodine receptors in the rabbit heart. Am J Physiol Heart Circ Physiol 278:H1429–H1438

    PubMed  CAS  Google Scholar 

  96. Klemperer JD, Klein IL, Ojamaa K et al (1996) Triiodothyronine therapy lowers the incidence of atrial fibrillation after cardiac operations. Ann Thorac Surg 61:1323–1327

    PubMed  CAS  Google Scholar 

  97. Klemperer JD, Klein I, Gomez M et al (1995) Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 333:1522–1527

    PubMed  CAS  Google Scholar 

  98. Ranasinghe AM, Quinn DW, Pagano D et al (2006) Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114:I245–I250

    PubMed  Google Scholar 

  99. Novitzky D, Fontanet H, Snyder M et al (1996) Impact of triiodothyronine on the survival of high-risk patients undergoing open heart surgery. Cardiology 87:509–555

    PubMed  CAS  Google Scholar 

  100. Portman MA, Fearneyhough C, Ning XH et al (2000) Triiodothyronine repletion in infants during cardiopulmonary bypass for congenital heart disease. J Thorac Cardiovasc Surg 120:604–608

    PubMed  CAS  Google Scholar 

  101. Bettendorf M, Schmidt KG, Grulich-Henn J et al (2000) Triiodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet 356:529–534

    PubMed  CAS  Google Scholar 

  102. Novitzky D (1996) Novel actions of thyroid hormone: the role of triiodothyronine in cardiac transplantation. Thyroid 6:531–536

    PubMed  CAS  Google Scholar 

  103. Brokhin M, Klein I (2005) Low T3 syndrome in a patient with acute myocarditis. Clin Cornerstone 7: S28–S29

    PubMed  Google Scholar 

  104. Moruzzi P, Doria E, Agostoni PG et al (1994) Usefulness of L-thyroxine to improve cardiac and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol 73:374–378

    PubMed  CAS  Google Scholar 

  105. Moruzzi P, Doria E, Agostoni PG et al (1996) Medium-term effectiveness of L-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med 101:461–467

    PubMed  CAS  Google Scholar 

  106. Hammond HK, White FC, Buxton IL et al (1987) Increased myocardial beta-receptors and adrenergic responses in hyperthyroid pigs. Am J Physiol 252:H283–H290

    PubMed  CAS  Google Scholar 

  107. Malik FS, Mehra MR, Uber PA et al (1999) Intravenous thyroid hormone supplementation in heart failure with cardiogenic shock. J Card Fail 5:31–37

    PubMed  CAS  Google Scholar 

  108. Hamilton MA, Stevenson LW, Fonarow GC et al (1998) Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol 81:443–447

    PubMed  CAS  Google Scholar 

  109. Iervasi G, Emdin M, Colzani RMP et al (2001) Beneficial effects of long-term triiodothyronine (T3) infusion in patients with advanced heart failure and low T3 syndrome. In: Kimchi A (ed) Heart disease: new trends in research. diagnosis and treatment. Medimond, Bologna. pp 549–553

    Google Scholar 

  110. Mano T, Sakamoto H, Fujita K et al (1998) Effects of thyroid hormone on catecholamine and its metabolite concentrations in rat cardiac muscle and cerebral cortex. Thyroid 8:353–335

    PubMed  CAS  Google Scholar 

  111. Park CW, Shin YS, Ahn SJ et al (2001) Thyroxine treatment induces up-regulation of renin-angiotensin-aldosterone system due to decreasing effective plasma volume in patients with primary myxoedema. Nephrol Dial Transplant 16:1799–1806

    PubMed  CAS  Google Scholar 

  112. Escobar-Morreale HF, Del Rey FE, Obregon MJ et al (1996) Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 137:2490–2502

    PubMed  CAS  Google Scholar 

  113. Danzi S, Dubon P, Klein I (2005) Effect of serum triiodothyronine on regulation of cardiac gene expression: role of histone acetylation. Am J Physiol Heart Cire Physiol 289:H1506–H1511

    CAS  Google Scholar 

  114. Degens H, Gilde AJ, Lindhout M et al (2003) Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol 284:H108–H115

    PubMed  CAS  Google Scholar 

  115. Boehm EA, Jones BE, Radda GK et al (2001) Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol 280:H977–H983

    PubMed  CAS  Google Scholar 

  116. Pennock GD, Raya TE, Bahl JJ et al (1992) Cardiac effects of 3,5-diiodothyropropionic acid, a thyroid hormone analog with inotropic selectivity. J Pharmacol Exp Ther 263:163–169

    PubMed  CAS  Google Scholar 

  117. Morkin E, Pennock G, Spooner PH et al (2002) Pilot studies on the use of 3,5-diiodothyropropionic acid, a thyroid hormone analog, in the treatment of congestive heart failure. Cardiology 97:218–225

    PubMed  CAS  Google Scholar 

  118. Morkin E, Ladenson P, Goldman S et al (2004) Thyroid hormone analogs for treatment of hypercholesterolemia and heart failure: past, present and future prospects. J Mol Cell Cardiol 37:1137–1146

    PubMed  CAS  Google Scholar 

  119. Goldman S, McCarren M, Morkin E et al (2008) DITPA, a thyroid hormone analog to treat heart failure: phase II Trial VA Cooperative Study. J Card Fail 2008; 14:796

    Google Scholar 

  120. Villabona C, Sahun M, Roca M et al (1999) Blood volumes and renal function in overt and subclinical primary hypothyroidism. Am J Med Sci 318:277–280

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Pingitore, A., Lionetti, V., Forini, F. (2009). Synthetic Thyroid Hormone and Thyroid Hormone Analogues for Treatment of Heart Failure. In: Iervasi, G., Pingitore, A. (eds) Thyroid and Heart Failure. Springer, Milano. https://doi.org/10.1007/978-88-470-1143-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1143-4_20

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1142-7

  • Online ISBN: 978-88-470-1143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics