Skip to main content

Thyroid Hormone and Ischemic Myocardium

  • Chapter
Thyroid and Heart Failure

Abstract

Thyroid hormone (TH) promotes tissue growth and differentiation and as such has pleiotropic actions on the heart: it regulates metabolism, cellular function and morphology, and cellular response to stress. TH increases the tolerance of the heart to ischemia via regulation of cardioprotective intracellular signaling and can improve hemodynamics in the setting of ischemia-reperfusion due to its inotropic and antiapoptotic action. Changes in the thyroid hormone-thyroid hormone receptor (TH-TR) axis occur in the course of postinfarction cardiac remodeling and contribute to fetal cardiac phenotype. A low thyroid hormone state is not uncommon in ischemic myocardial conditions and may be a protective response against ischemic stress, at the expense, though, of impaired cardiac function. In addition TH prevents and/or reverses postinfarction cardiac remodeling by regulating the expression of contractile proteins, inducing novel signaling pathways related to cardiac contractility, and optimizing cardiac chamber geometry. TH or its analogues may be a new therapeutic option for treating ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pantos C, Mourouzis I, Xinaris C et al (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294

    PubMed  CAS  Google Scholar 

  2. Pantos C, Mourouzis I, Xinaris C et al (2007) Time-dependent changes in the expression of thyroid hormone receptor al in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. Eur J Endocrinol 156:415–424

    PubMed  CAS  Google Scholar 

  3. Pantos C, Dritsas A, Mourouzis I et al (2007) Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. Eur J Endocrinol 157:515–520

    PubMed  CAS  Google Scholar 

  4. Pingitore A, Iervasi G, Barison A et al (2006) Early activation of an altered thyroid hormone profile in asymptomatic or mildly symptomatic idiopathic left ventricular dysfunction. J Card Fail 12:520–526

    PubMed  CAS  Google Scholar 

  5. Pingitore A, Landi P, Taddei MC et al (2005) Triidothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 118:132–136

    PubMed  CAS  Google Scholar 

  6. Kuzman JA, Gerdes AM, Kobayashi S et al (2005) Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J MOl Cell Cardiol 39:841–844

    PubMed  CAS  Google Scholar 

  7. Pantos CI, Malliopoulou VA, Mourouzis IS et al (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12:325–329

    PubMed  CAS  Google Scholar 

  8. Ranasinghe AM, Quinn DW, Pagano D et al (2006) Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114:I245–250

    PubMed  Google Scholar 

  9. Zinman T, Shneyvays V, Tribulova N et al (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207:220–231

    PubMed  CAS  Google Scholar 

  10. Buser PT, Wikman-Coffelt J, Wu ST et al (1990) Postischemic recovery of mechanical performance and energy metabolism in the presence of left ventricular hypertrophy. A 31P-MRS study. Circ Res 66:735–746

    PubMed  CAS  Google Scholar 

  11. Pantos CI, Mourouzis IS, Tzeis SM et al (2000) Propranolol diminishes cardiac hypertrophy but does not abolish acceleration of the ischemic contracture in hyperthyroid hearts. J Cardiovasc Pharmacol 36:384–389

    PubMed  CAS  Google Scholar 

  12. Kolocassides KG, Galinanes M, Hearse DJ (1996) Dichotomy of ischemic preconditioning: improved postischemic contractile function despite intensification of ischemic contracture. Circulation 93:1725–1733

    PubMed  CAS  Google Scholar 

  13. Pantos C, Malliopoulou V, Mourouzis I et al (2003) Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia-reperfusion. J Endocrinol 178:427–435

    PubMed  CAS  Google Scholar 

  14. Pantos CI, Cokkinos DD, Tzeis SM et al (1999) Hyperthyroidism is associated with preserved preconditioning capacity but intensified and accelerated ischaemic contracture in rat heart. Basic Res Cardiol 94:254–260

    PubMed  CAS  Google Scholar 

  15. Pantos C, Paizis I, Mourouzis I et al (2005) Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy but does not abolish thyroxin-induced preconditioning. Horm Metab Res 37:500–504

    PubMed  CAS  Google Scholar 

  16. Pantos CI, Davos CH, Carageorgiou HC et al (1996) Is chaemic preconditioning protects against myocardial dysfunction caused by ischaemia in isolated hypertrophied rat hearts. Basic Res Cardiol 91:444–449

    PubMed  CAS  Google Scholar 

  17. Speechly-Dick ME, Mocanu MM, Yellon DM (1994) Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res 75:586–590

    PubMed  CAS  Google Scholar 

  18. Zhao J, Renner O, Wightman L et al (1998) The expression of constitutively active isotypes of protein kinase C to investigate preconditioning. J Biol Chem 273:23072–23079

    PubMed  CAS  Google Scholar 

  19. Maizels ET, Peters CA, Kline M et al (1998) Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 332 (Pt 3):703–712

    PubMed  CAS  Google Scholar 

  20. Pantos C, Malliopoulou V, Mourouzis I et al (2003) Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. Eur J Pharmacol 478:53–60

    PubMed  CAS  Google Scholar 

  21. Kim YK, Suarez J, Hu Y et al (2006) Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy. Circulation 113:2589–2597

    PubMed  CAS  Google Scholar 

  22. Martin JL, Mestril R, Hilal-Dandan R et al (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    PubMed  CAS  Google Scholar 

  23. Pantos CI, Malliopoulou VA, Mourouzis IS et al (2001) Long-term thyroxine administration increases heat stress protein-70 mRNA expression and attenuates p38 MAP kinase activity in response to ischaemia. J Endocrinol 170:207–2015

    PubMed  CAS  Google Scholar 

  24. Pantos C, Malliopoulou V, Mourouzis I et al (2006) Hyperthyroid hearts display a phenotype of cardioprotection against ischemia stress: a possible involvement of heat shock protein 70. Horm Metab Res 38:308–313

    PubMed  CAS  Google Scholar 

  25. Venditti P, Di Meo S (2006) Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 63:414–434

    PubMed  CAS  Google Scholar 

  26. Downey JM, Davis AM, Cohen MV (2007) Signaling pathways in ischemic preconditioning. Heart Fail Rev 12:181–188

    PubMed  CAS  Google Scholar 

  27. Novitzky D, Cooper DK, Swanepoel A (1989) Inotropic effect of triiodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery. Eur J Cardiothorac Surg 3:140–145

    PubMed  CAS  Google Scholar 

  28. Pantos C, Mourouzis I, Tzeis S et al (2003) Dobutamine administration exacerbates postischaemic myocardial dysfunction in isolated rat hearts: an effect reversed by thyroxine pretreatment. Eur J Pharmacol 460:155–161

    PubMed  CAS  Google Scholar 

  29. Pantos C, Cokkinos DV (2006) Hormones signaling and myocardial ischemia. In: Cokkinos DV, Pantos C, Heusch G, Taegtmeyer H (eds) Myocardial ischemia: from mechanisms to theurapeutic potentials. Springer, New York, pp 11–77

    Google Scholar 

  30. Chen YF, Kobayashi S, Chen J et al (2008) Short term triiodo-1-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44:180–187

    PubMed  CAS  Google Scholar 

  31. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509

    PubMed  CAS  Google Scholar 

  32. Friberg L, Werner S, Eggertsen G et al (2002) Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch Intern Med 162:1388–1394

    PubMed  CAS  Google Scholar 

  33. Pantos C, Mourouzis I, Saranteas T et al (2005) Thyroid hormone receptors alpha 1 and beta 1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Res Cardiol 100:422–432

    PubMed  CAS  Google Scholar 

  34. Mourouzis I, Dimopoulos A, Saranteas T et al (2008) Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart. Physiol Res. Epub ahead of print: http://www.biomed. cas.cz/physiolres/pdf/prepress/1387.pdf

    Google Scholar 

  35. Biondi B, Klein I (2004) Hypothyroidism as a risk factor for cardiovascular disease. Endocrine 24:1–13

    PubMed  CAS  Google Scholar 

  36. Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59:418–458

    PubMed  CAS  Google Scholar 

  37. Ojamaa K, Kenessey A, Shenoy R et al (2000) Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol Endocrinol Metab 279:E1319–324

    PubMed  CAS  Google Scholar 

  38. Olivares EL, Marassi MP, Fortunato RS et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats: a time course study. Endocrinology 148:4786–4792

    PubMed  CAS  Google Scholar 

  39. Mai W, Janier MF, Allioli N et al (2004) Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101:10332–10337

    PubMed  CAS  Google Scholar 

  40. White P, Burton KA, Fowden AL et al (2001) Developmental expression analysis of thyroid hormone receptor isoforms reveals new insights into their essential functions in cardiac and skeletal muscles. FASEB J 15:1367–1376

    PubMed  CAS  Google Scholar 

  41. Torre-Amione G (2005) Immune activation in chronic heart failure. Am J Cardiol 95:3C–8C; discussion 38C–40C

    PubMed  CAS  Google Scholar 

  42. Barron AJ, Finn SG, Fuller SJ (2003) Chronic activation of extracellular-signal-regulated protein kinases by phenylephrine is required to elicit a hypertrophic response in cardiac myocytes. Biochem J 371:71–79

    PubMed  CAS  Google Scholar 

  43. Pantos C, Xinaris C, Mourouzis I et al (2008) Thyroid hormone receptor a1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol 59:253–269

    PubMed  CAS  Google Scholar 

  44. Kinugawa K, Jeong MY, Bristow MR et al (2005) Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alphal-specific manner that requires TAK1 and p38 mitogen-activated protein kinase. Mol Endocrinol 19:1618–1628

    PubMed  CAS  Google Scholar 

  45. Tavi P, Sjogren M, Lunde PK et al (2005) Impaired Ca2+ handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor alpha 1. J Mol Cell Cardiol 38:655–663

    PubMed  CAS  Google Scholar 

  46. Pantos C, Xinaris C, Mourouzis I et al (2008) TNF-a administration in neonatal cardiomyocytes is associated with differential expression of thyroid hormone receptors: a response prevented by T3. Horm Metab Res 40:731–734

    PubMed  CAS  Google Scholar 

  47. Wang B, Ouyang J, Xia Z (2006) Effects of triiodo-thyronine on angiotensin-induced cardiomyocyte hypertrophy: reversal of increased beta-myosin heavy chain gene expression. Can J Physiol Pharmacol 84:935–941

    PubMed  CAS  Google Scholar 

  48. Kenessey A, Sullivan EA, Ojamaa K (2006) Nuclear localization of protein kinase C-alpha induces thyroid hormone receptor-alphal expression in the cardiomyocyte. Am J Physiol Heart Circ Physiol 290:H381–389

    PubMed  CAS  Google Scholar 

  49. Pantos C, Mourouzis I, Markakis K et al (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamic early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339

    PubMed  Google Scholar 

  50. Pantos C, Mourouzis I, Markakis K et al (2008) Long-term thyroid hormone administration re-shapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318

    PubMed  CAS  Google Scholar 

  51. Gay R, Gustafson TA, Goldman S et al (1987) Effects of 1-thyroxine in rats with chronic heart failure after myocardial infarction. Am J Physiol 253:H341–346

    PubMed  CAS  Google Scholar 

  52. Gay RG, Graham S, Aguirre M et al (1988) Effects of 10-to 12-day treatment with 1-thyroxine in rats with myocardial infarction. Am J Physiol 255:H801–806

    PubMed  CAS  Google Scholar 

  53. Hambleton M, Hahn H, Pleger ST et al (2006) Pharmacological-and gene therapy-based inhibition of protein kinase Calpha/beta enhances cardiac contractility and attenuates heart failure. Circulation 114:574–582

    PubMed  CAS  Google Scholar 

  54. Scruggs SB, Walker LA, Lyu T et al (2006) Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKCe phosphorylation. J Mol Cell Cardiol 40:465–473

    PubMed  CAS  Google Scholar 

  55. Pantos C, Xinaris C, Mourouzis I et al (2007) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297:65–72

    PubMed  CAS  Google Scholar 

  56. Wong SP, French JK, Lydon AM et al (2004) Relation of left ventricular sphericity to 10-year survival after acute myocardial infarction. Am J Cardiol 94:1270–1275

    PubMed  Google Scholar 

  57. Lembcke A, Dushe S, Dohmen PM et al (2006) Early and late effects of passive epicardial constraint on left ventricular geometry: ellipsoidal re-shaping confirmed by electronbeam computed tomography. J Heart Lung Transplant 25:90–98

    PubMed  Google Scholar 

  58. Klein I, Hong C (1986) Effects of thyroid hormone on cardiac size and myosin content of the heterotopically transplanted rat heart. J Clin Invest 77:1694–1698

    PubMed  CAS  Google Scholar 

  59. Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672

    PubMed  CAS  Google Scholar 

  60. Ziegelhoffer-Mihalovicova B, Briest W, Baba HA et al (2003) The expression of mRNA of cytokines and of extracellular matrix proteins in triiodothyronine-treated rat hearts. Mol Cell Biochem 247:61–68

    PubMed  Google Scholar 

  61. Wong K, Boheler KR, Petrou M et al (1997) Pharmacological modulation of pressure-overload cardiac hypertrophy: changes in ventricular function, extracellular matrix, and gene expression. Circulation 96:2239–2246

    PubMed  CAS  Google Scholar 

  62. Yao J, Eghbali M (1992) Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res 71:831–839

    PubMed  CAS  Google Scholar 

  63. Xinaris C, Mourouzis I, Carageorgiou H et al (2006) Differential activation of stress kinase signaling by phenylephrine and thyroid hormone in neonatal cardiomycytes. J Mol Cell Cardiol 40:999

    Google Scholar 

  64. Xinaris C, Mourouzis I, Pantos C et al (2006) Thyroid hormone promotes cardiac myocyte plasticity via activation of stress kinase signalling [abstract]. J Mol Cell Cardiol 40:218 (Abstract)

    Google Scholar 

  65. Columbano A, Pibiri M, Deidda M et al (2006) The thyroid hormone receptor-beta agonist GC-1 induces cell proliferation in rat liver and pancreas. Endocrinology 147:3211–3218

    PubMed  CAS  Google Scholar 

  66. Khait L, Birla RK (2008) Effect of thyroid hormone on the contractility of self-organized heart muscle. In Vitro Cell Dev Biol Anim 44:204–213

    PubMed  CAS  Google Scholar 

  67. Knezl V, Soukup T, Okruhlicova L et al (2008) Thyroid hormones modulate occurrence and termination of ventricular fibrillation by both long-term and acute actions. Physiol Res 57(Suppl 2):S91–96

    Google Scholar 

  68. Ellis CR, Murray KT (2008) When an ICD is not the answer… Hypothyroidism-induced cardiomyopathy and torsades de pointes. J Cardiovasc Electrophysiol 19:1105–1107

    PubMed  Google Scholar 

  69. Abo-Zenah HA, Shoeb SA, Sabry AA et al (2008) Relating circulating thyroid hormone concentrations to serum interleukins-6 and 10 in association with non-thyroidal illnesses including chronic renal insufficiency. BMC Endocr Disord 8:1

    PubMed  Google Scholar 

  70. Kimura T, Kanda T, Kotajima N et al (2000) Involvement of circulating interleukin-6 and its receptor in the development of euthyroid sick syndrome in patients with acute myocardial infarction. Eur J Endocrinol 143:179–184

    PubMed  CAS  Google Scholar 

  71. Eber B, Schumacher M, Langsteger W et al (1995) Changes in thyroid hormone parameters after acute myocardial infarction. Cardiology 86:152–156

    PubMed  CAS  Google Scholar 

  72. Holland FW 2nd, Brown PS Jr. Weintraub BD et al (1991) Cardiopulmonary bypass and thyroid function: a “euthyroid sick syndrome”. Ann Thorac Surg 52:46–50

    PubMed  Google Scholar 

  73. Iervasi G, Pingitore A, Landi P et al (2003) Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation 107:708–713

    PubMed  Google Scholar 

  74. Van Beeren HC, Jong WM, Kaptein E et al (2003) Dronerarone acts as a selective inhibitor of 3,5,3?-triiodothyronine binding to thyroid hormone receptor-alphal: in vitro and in vivo evidence. Endocrinology 144:552–558

    PubMed  Google Scholar 

  75. Pantos C, Mourouzis I, Malliopoulou V et al (2005) Dronedarone administration prevents body weight gain and increases tolerance of the heart to ischemic stress: a possible involvement of thyroid hormone receptor alphal. Thyroid 15:16–23

    PubMed  CAS  Google Scholar 

  76. Klein I (2003) Thyroid hormone and cardiac contractility. Am J Cardiol 91:1331–1332

    PubMed  Google Scholar 

  77. Naito H, Melnychenko I, Didie M et al (2006) Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114:172–728

    Google Scholar 

  78. Pantos C, Malliopoulou V, Varonos DD et al (2004) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99:101–120

    PubMed  CAS  Google Scholar 

  79. Tomanek RJ, Doty MK, Sandra A (1998) Early coronary angiogenesis in response to thyroxine: growth characteristics and upregulation of basic fibroblast growth factor. Circ Res 82:587–593

    PubMed  CAS  Google Scholar 

  80. Ronald A, Dunning J (2006) Does perioperative thyroxine have a role during adult cardiac surgery? Interact Cardiovasc Thorac Surg 5:166–178

    PubMed  Google Scholar 

  81. Novitzky D, Fontanet H, Snyder M et al (1996) Impact of triiodothyronine on the survival of high-risk patients undergoing open heart surgery. Cardiology 87:509–515

    PubMed  CAS  Google Scholar 

  82. Malik FS, Mehra MR, Uber PA et al (1999) Intravenous thyroid hormone supplementation in heart failure with cardiogenic shock. J Card Fail 5:31–37

    PubMed  CAS  Google Scholar 

  83. Minatoya Y, Ito K, Kagaya Y et al (2007) Depressed contractile reserve and impaired calcium handling of cardiac myocytes from chronically unloaded hearts are ameliorated with the administration of physiological treatment dose of T3 in rats. Acta Physiol (Oxf) 189:221–231

    CAS  Google Scholar 

  84. Pantos C (2007) Thyroid hormone at physiological doses restores depressed contractile reserve and impaired calcium handling of cardiac myocytes from chronically unloaded hearts. Acta Physiol (Oxf) 189:219

    Google Scholar 

  85. Sawin CT (2002) Subclinical hyperthyroidism and atrial fibrillation. Thyroid 12:501–503

    PubMed  Google Scholar 

  86. Trost SU, Swanson E, Gloss B et al (2000) The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 141:3057–3064

    PubMed  CAS  Google Scholar 

  87. Ocasio CA, Scanlan TS (2006) Design and characterization of a thyroid hormone receptor alpha (TRa)-specific agonist. ACS Chem Biol 1:585–593

    PubMed  CAS  Google Scholar 

  88. Mousa SA, O’Connor LJ, Bergh JJ et al (2005) The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol 46:356–360

    PubMed  CAS  Google Scholar 

  89. Grover GJ, Mellstrom K, Malm J (2007) Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia and diabetes. Curr Vasc Pharmacol 5:141–154

    PubMed  CAS  Google Scholar 

  90. Litwin SE, Zhang D, Roberge P et al (2000) DITPA prevents the blunted contraction-frequency relationship in myocytes from infarcted hearts. Am J Physiol Heart Circ Physiol 278:H862–870

    PubMed  CAS  Google Scholar 

  91. Mahaffey KW, Raya TE, Pennock GD et al (1995) Left ventricular performance and remodeling in rabbits after myocardial infarction. Effects of a thyroid hormone analogue. Circulation 91:794–801

    PubMed  CAS  Google Scholar 

  92. Pennock GD, Spooner PH, Summers CE et al (2000) Prevention of abnormal sarcoplasmic reticulum calcium transport and protein expression in post-infarction heart failure using 3,5-diiodothyropropionic acid (DITPA). J Mol Cell Cardiol 32:1939–1953

    PubMed  CAS  Google Scholar 

  93. Spooner PH, Thai HM, Goldman S et al (2004) Thyroid hormone analog, DITPA, improves endothelial nitric oxide and beta-adrenergic mediated vasorelaxation after myocardial infarction. J Cardiovasc Pharmacol 44:453–459

    PubMed  CAS  Google Scholar 

  94. Tomanek RJ, Zimmerman MB, Suvarna PR et al (1998) A thyroid hormone analog stimulates angiogenesis in the post-infarcted rat heart. J Mol Cell Cardiol 30:923–932

    PubMed  CAS  Google Scholar 

  95. Zheng W, Weiss RM, Wang X et al (2004) DITPA stimulates arteriolar growth and modifies myocardial postinfarction remodeling. Am J Physiol Heart Circ Physiol 286:H1994–2000

    PubMed  CAS  Google Scholar 

  96. Morkin E, Pennock GD, Spooner PH et al (2002) Clinical and experimental studies on the use of 3,5-diiodothyropropionic acid, a thyroid hormone analogue, in heart failure. Thyroid 12:527–533

    PubMed  CAS  Google Scholar 

  97. Dyke CM, Yeh T, Jr., Lehman JD et al (1991) Triiodothyronine-enhanced left ventricular function after ischemic injury. Ann Thorac Surg 52:14–19

    PubMed  CAS  Google Scholar 

  98. Novitzky D, Matthews N, Shawley D et al (1991) Triiodothyronine in the recovery of stunned myocardium in dogs. Ann Thorac Surg 51:10–16; discussion 16–17

    Article  PubMed  CAS  Google Scholar 

  99. Holland FW 2nd, Brown PS Jr, Clark RE (1992) Acute severe postischemic myocardial depression reversed by triiodothyronine. Ann Thorac Surg 54:301–305

    Article  PubMed  Google Scholar 

  100. Dyke CM, Ding M, Abd-Elfattah AS et al (1993) Effects of triiodothyronine supplementation after myocardial ischemia. Ann Thorac Surg 56:215–222

    PubMed  CAS  Google Scholar 

  101. Kadletz M, Mullen PG, Ding M et al (1994) Effect of triiodothyronine on postischemic myocardial function in the isolated heart. Ann Thorac Surg 57:657–662

    PubMed  CAS  Google Scholar 

  102. Klemperer JD, Klein I, Gomez M et al (1995) Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 333:1522–1527

    PubMed  CAS  Google Scholar 

  103. Walker JD, Crawford FA, Jr., Spinale FG (1995) 3,5,3?-Triiodo-1-thyronine pretreatment with cardioplegic arrest and chronic left ventricular dysfunction. Ann Thorac Surg 60:292–299

    PubMed  CAS  Google Scholar 

  104. Klemperer JD, Zelano J, Helm RE et al (1995) Triiodothyronine improves left ventricular function without oxygen wasting effects after global hypothermic ischemia. J Thorac Cardiovasc Surg 109:457–465

    PubMed  CAS  Google Scholar 

  105. Liu Q, Clanachan AS, Lopaschuk GD (1998) Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Physiol 275:E392–399

    PubMed  CAS  Google Scholar 

  106. Spinale FG (1999) Cellular and molecular therapeutic targets for treatment of contractile dysfunction after cardioplegic arrest. Ann Thorac Surg 68:1934–1941

    PubMed  CAS  Google Scholar 

  107. Lahorra JA, Torchiana DF, Hahn C et al (2000) Recovery after cardioplegia in the hypertrophic rat heart. J Surg Res 88:88–96

    PubMed  CAS  Google Scholar 

  108. Venditti P, Masullo P, Agnisola C et al (2000) Effect of vitamin E on the response to ischemia-reperfusion of Langendorff heart preparations from hyperthyroid rats. Life Sci 66:697–708

    PubMed  CAS  Google Scholar 

  109. Asahi T, Shimabukuro M, Oshiro Y et al (2001) Cilazapril prevents cardiac hypertrophy and postischemic myocardial dysfunction in hyperthyroid rats. Thyroid 11:1009–1015

    PubMed  CAS  Google Scholar 

  110. Pol CJ, van Deel ED, Muller A et al (2008) Left ventricular myocardial infarction in mice induces sustained cardiac deiodinase type III activity. J Mol Cell Cardiol 44:722–723

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Pantos, C., Mourouzis, I., Cokkinos, D.V. (2009). Thyroid Hormone and Ischemic Myocardium. In: Iervasi, G., Pingitore, A. (eds) Thyroid and Heart Failure. Springer, Milano. https://doi.org/10.1007/978-88-470-1143-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1143-4_13

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1142-7

  • Online ISBN: 978-88-470-1143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics