Skip to main content

Updates on Cardiac Arrest and Cardiopulmonary Resuscitation

  • Chapter
Perioperative Critical Care Cardiology

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

  • 1588 Accesses

Abstract

Cardiac arrest is a dramatic clinical event that can occur suddenly, often without premonitory signs. The condition is characterized by sudden loss of consciousness due to the lack of cerebral blood flow, which occurs when the heart ceases to pump. This phenomenon is potentially reversible if cardiopulmonary resuscitation (CPR) procedures are started early, but it becomes irreversible without interventions or when initiation of CPR is delayed [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gullo A (2002) Cardiac arrest, chain of survival and Utstein style. Eur J Anaesthesiol 19:624–633

    Article  PubMed  CAS  Google Scholar 

  2. Weil MH, Sun S (2005) Clinical review: Devices and drugs for cardiopulmonary resuscitation—opportunities and restraints. Crit Care 9:287–290

    Article  PubMed  Google Scholar 

  3. Cummins RO, Eisenberg MS (1985) Prehospital cardiopulmonary resuscitation; is it effective? JAMA 253:2408–2412

    Article  PubMed  CAS  Google Scholar 

  4. International Liaison Committee on Resuscitation (2005) Part 2: Adult basic life support. Resuscitation 67:187–201

    Article  Google Scholar 

  5. Sanders AB, Ewy GA (2005) Cardiopulmonary resuscitation in the real world: when will the guidelines get the message? JAMA 293:363–365

    Article  PubMed  CAS  Google Scholar 

  6. Nichol G, Stiell IG, Laupacis A et al (1999) A cumulative meta-analysis of the effectiveness of defibrillator-capable emergency medical services for victims of out-ofhospital cardiac arrest. Ann Emerg Med 34:517–525

    Article  PubMed  CAS  Google Scholar 

  7. Engdahl J, Bang A, Lindqvist J et al (2003) Time trends in long-term mortality after out-of-hospital cardiac arrest, 1980 to 1998, and predictors for death. Am Heart J 145:749–750

    Article  Google Scholar 

  8. Eisenberg MS, Horwood BT, Cummins RO et al (1990) Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 19:179–186

    Article  PubMed  CAS  Google Scholar 

  9. Becker LB, Ostrander MP, Barrett J et al (1991) Outcome of cardiopulmonary resuscitation in a large metropolitan area: where are the survivors? Ann Emerg Med 20:355–361

    Article  PubMed  CAS  Google Scholar 

  10. Caffrey SL, Willoughby PJ, Pepe PE et al (2002) Public use of automated external defibrillators. N Engl J Med 347:1242–1247

    Article  PubMed  Google Scholar 

  11. Larsen MP, Eisenberg MS, Cummins RO, et al. (1993) Predicting survival from outof-hospital cardiac arrest: a graphic model. Ann Emerg Med 22:1652–1658

    Article  PubMed  CAS  Google Scholar 

  12. Rea TD, Eisenberg MS, Culley LL et al (2001) Dispatcher-assisted cardiopulmonary resuscitation and survival in cardiac arrest. Circulation 104:2513–2516

    PubMed  CAS  Google Scholar 

  13. White RD (1997) Optimal access to—response by—public and voluntary services, including the role of bystanders and family members, in cardiopulmonary resuscitation. New Horiz 5:153–157

    PubMed  CAS  Google Scholar 

  14. Cummins RO, Ornato JP, Thies WH et al (1991) Improving survival from sudden cardiac arrest: the “chain of survival” concept. A statement for health professionals from the 20 Advanced Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American Heart Association. Circulation 83:1832–184

    PubMed  CAS  Google Scholar 

  15. Jacobs I, Nadkarni V, Barh J et al (2004) Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation. Circulation 110:3385–3397

    Article  PubMed  Google Scholar 

  16. American Heart Association (2005) 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 3: Overview of CPR. Circulation 112(24 Suppl):IV-12–18

    Google Scholar 

  17. Herlitz J, Ekstrom L, Wennerblom B et al (1994) Effects of bystander initiated cardiopulmonary resuscitation on ventricular fibrillation and survival after witnessed cardiac arrest outside hospital. Br Heart J 72:408–412

    PubMed  CAS  Google Scholar 

  18. Wik L, Steen PA, Bircher NG (1994) Quality of bystander cardiopulmonary resuscitation influences outcome after prehospital cardiac arrest. Resuscitation 28:195–203

    Article  PubMed  CAS  Google Scholar 

  19. Wik L, Kramer-Johansen J, Myklebust H et al. (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293:299–304

    Article  PubMed  CAS  Google Scholar 

  20. No authors listed (2000) Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care: international consensus on science. Circulation 102(8 Suppl):I1–I403

    Google Scholar 

  21. Abella BS, Sandbo N, Alvarado JP et al (2005) Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 293:305–310

    Article  PubMed  CAS  Google Scholar 

  22. Abella BS, Sandbo N, Vassilatos P et al (2005) Chest compression rates during cardiopulmonary resuscitation are suboptimal. Circulation 111:428–434

    Article  PubMed  Google Scholar 

  23. Aufderheide TP, Sigurdsson G, Pirrallo RG et al (2004) Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 109:1960–1965

    Article  PubMed  Google Scholar 

  24. Deshmukh HG, Weil MH, Gudipati CV et al (1989) Mechanism of blood flow generated by precordial compression during CPR. I: Studies on closed chest precordial compression. Chest 95:1092–1099

    PubMed  CAS  Google Scholar 

  25. Sanders AB, Kern KB, Atlas M et al (1985) Importance of the duration of inadequate coronary perfusion pressure on resuscitation from cardiac arrest. J Am Coll Cardiol 6:113–118

    PubMed  CAS  Google Scholar 

  26. Sanders AB, Ogle M, Ewy GA (1985) Coronary perfusion pressure during cardiopulmonary resuscitation. Am J Emerg Med 2:11–14

    Article  Google Scholar 

  27. Yu T, Weil MH, Tang W et al (2002) Adverse outcome of interrupted precordial compression during automated defibrillation. Circulation 106:368–372

    Article  PubMed  Google Scholar 

  28. Paradis NA, Martin GB, Rivers EP et al (1990) Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 263:1106–1113

    Article  PubMed  CAS  Google Scholar 

  29. Sanders AB, Kern KB, Berg RA et al (2002) Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios. Ann Emerg Med 40:553–562

    Article  PubMed  Google Scholar 

  30. Yannopoulos D, McKnite SH, Tang W et al (2005) Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care 50:628–635

    PubMed  Google Scholar 

  31. Tang W, Weil MH, Sun S et al (1994) Cardiopulmonary resuscitation by precordial compression but without mechanical ventilation. Am J Respir Crit Care Med 150(6Pt1):1709–1713

    PubMed  CAS  Google Scholar 

  32. Noc M, Weil MH, Tang W et al (1995) Mechanical ventilation may not be essential for initial cardiopulmonary resuscitation. Chest 108:821–827

    PubMed  CAS  Google Scholar 

  33. Noc M, Weil MH, Tang W et al (1994) Spontaneous gasping during cardiopulmonary resuscitation without mechanical ventilation. Am J Respir Crit Care Med 150:861–864

    PubMed  CAS  Google Scholar 

  34. Fukui M, Weil MH, Tang W et al (1995) Airway protection during experimental CPR. Chest 108:1663–1667

    PubMed  CAS  Google Scholar 

  35. Babbs CF, Kern KB (2002) Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis. Resuscitation 54:147–157

    Article  PubMed  Google Scholar 

  36. Weil MH, Tang W (1997) Cardiopulmonary resuscitation: a promise as yet largely unfulfilled. Dis Mon 43:429–501

    PubMed  CAS  Google Scholar 

  37. Kern KB, Hilwig RW, Berg RA et al (2002) Importance of continuous chest compressions during cardiopulmonary resuscitation. Improved outcome during a simulated single lay-rescuer scenario. Circulation 105:645–649

    Article  PubMed  Google Scholar 

  38. Berg RA, Sanders AB, Kern KB et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470

    PubMed  CAS  Google Scholar 

  39. No authors listed (2000) Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 3: Adult basic life support. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation 102(8Suppl):I22–I59

    Google Scholar 

  40. Eisemberg MS, Copass MK, Hallstrom AP et al (1980) Treatment of out-of-hospital cardiac arrests with rapid defibrillation by emergency medical technicians. N Engl J Med 302:1379–1383

    Article  Google Scholar 

  41. Valenzuela TD, Roe DJ, Nichol G et al (2000) Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med 343:1206–1209

    Article  PubMed  CAS  Google Scholar 

  42. White R, Asplin B, Bugliosi T et al (1996) High discharge survival rate after out-of-hospital ventricular fibrillation with rapid defibrillation by police and paramedics. Ann Emerg Med 28:480–485

    Article  PubMed  CAS  Google Scholar 

  43. Cobb LA, Fahrenbruch CE, Walsh TR et al (1999) Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 281:1182–1188

    Article  PubMed  CAS  Google Scholar 

  44. Wik L, Hansen TB, Fylling F et al (2003) Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation. JAMA 289:1389–1395

    Article  PubMed  Google Scholar 

  45. Niemann JT, Cairns CB, Sharma J et al (1992) Treatment of prolonged ventricular fibrillation: immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation 85:281–287

    PubMed  CAS  Google Scholar 

  46. Berg RA, Hilwig RW, Ewy GA et al (2004) Precountershock cardiopulmonary resuscitation improves initial response to defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study. Crit Care Med 32:1352–1357

    Article  PubMed  Google Scholar 

  47. International Liaison Committee on Resuscitation (2005) Part 3: Defibrillation. Resuscitation 67:203–211

    Article  Google Scholar 

  48. Johnson BA, Weil MH, Tang W et al (1995) Mechanisms of myocardial hypercarbic acidosis during cardiac arrest. J Appl Physiol 78:1579–1584

    PubMed  CAS  Google Scholar 

  49. Kern KB, Garewal HS, Sanders AB et al (1990) Depletion of myocardial adenosine triphosphate during prolonged untreated ventricular fibrillation: effect on defibrillation success. Resuscitation 20:221–229

    Article  PubMed  CAS  Google Scholar 

  50. Steen S, Liao Q, Pierre L et al (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258

    Article  PubMed  Google Scholar 

  51. Klouche K, Weil MH, Sun S et al (2000) Echo-Doppler observations during cardiac arrest and cardiopulmonary resuscitation. Crit Care Med 28(11 Suppl):N212–N213

    Article  PubMed  CAS  Google Scholar 

  52. Klouche K, Weil MH, Sun S et al (2002) Evolution of the stone heart after prolonged cardiac arrest. Chest 122:1006–1011

    Article  PubMed  Google Scholar 

  53. Deshmukh HG, Weil MH, Gudipati CV et al (1989) Mechanism of blood flow generated by precordial compression during CPR. I: Studies on closed chest precordial compression. Chest 95:1092–1099

    PubMed  CAS  Google Scholar 

  54. Weisfeldt ML, Becker LB (2002) Resuscitation after cardiac arrest: a 3-phase times-ensitive model. JAMA 288:3035–3038

    Article  PubMed  Google Scholar 

  55. Xie J, Weil MH, Sun S et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688

    PubMed  CAS  Google Scholar 

  56. Snyder D, Morgan C (2004) Wide variation in cardiopulmonary resuscitation interruption intervals among commercially available automated external defibrillators may affect survival despite high defibrillation efficacy. Crit Care Med 32(9 Suppl):S421–S424

    Article  PubMed  Google Scholar 

  57. Yu T, Weil MH, Tang W et al (2002) Adverse outcome of interrupted precordial compression during automated defibrillation. Cirulation 106:368–372

    Article  Google Scholar 

  58. Sato Y, Weil MH, Sun S et al (1997) Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit Care Med 25:733–736

    Article  PubMed  CAS  Google Scholar 

  59. Hess EP, White RD (2005) Ventricular fibrillation is not provoked by chest compression during post-shock organized rhythms in out-of-hospital cardiac arrest. Resuscitation 66:7–11

    Article  PubMed  Google Scholar 

  60. Bain AC, Swerdlow CD, Love JC et al (2001) Multicenter study of principles-based waveforms for external defibrillation. Ann Emerg Med 37:5–12

    Article  PubMed  CAS  Google Scholar 

  61. Poole JE, White RD, Kanz KG et al (1997) Low-energy impedance-compensating biphasic waveforms terminate ventricular fibrillation at high rates in victims of out-of-hospital cardiac arrest. LIFE investigators. J Cardiovasc Electrophysiol 8:1373–1385

    PubMed  CAS  Google Scholar 

  62. Greene HL, Di Marco JP, Kudenchuk PJ et al (1995) Comparison of monophasic and biphasic defibrillating pulse waveforms for transthoracic cardioversion. Am J Cardiol 75:1135–1139

    Article  PubMed  CAS  Google Scholar 

  63. Schneider T, Martens PR, Paschen H et al (2000) Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200-to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Circulation 102:1780–1787

    PubMed  CAS  Google Scholar 

  64. Tang W, Weil MH, Sun S et al (2001) A comparison of biphasic and monophasic waveform defibrillation after prolonged ventricular fibrillation. Chest 103:948–954

    Article  Google Scholar 

  65. Tang W, Weil MH, Sun S et al (1999) The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function. J Am Coll Cardiol 34:815–822

    Article  PubMed  CAS  Google Scholar 

  66. Pellis T, Weil MH, Tang W et al (2003) Evidence favoring the use of an β2-selective vasopressor agent for cardiopulmonary resuscitation. Circulation 108:2716

    Article  PubMed  CAS  Google Scholar 

  67. Lewis CM, Weil MH (1969) Hemodynamic spectrum of vasopressor and vasodilator drugs. JAMA 208:1391–1398

    Article  PubMed  CAS  Google Scholar 

  68. No authors listed (2005) 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 112:25–54

    Google Scholar 

  69. Ditchey RV, Lindenfeld J (1988) Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 78:382–389

    PubMed  CAS  Google Scholar 

  70. Tang W, Weil MH, Sun S et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093

    PubMed  CAS  Google Scholar 

  71. Cammarata G, Weil MH, Sun S et al (2004) Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival. Crit Care Med 32(9 Suppl):S440–S443

    Article  PubMed  CAS  Google Scholar 

  72. Huang L, Weil MH, Cammarata G et al (2004) Nonselective beta-blocking agent improves the outcome of cardiopulmonary resuscitation in a rat model. Crit Care Med 32(9 Suppl):S378–S380

    Article  PubMed  CAS  Google Scholar 

  73. Grupp IL, Lorenz JN, Walsh RA et al (1998) Overexpression of alpha 1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am J Physiol 275:H1338–H1350

    PubMed  CAS  Google Scholar 

  74. Gregorini L, Marco J, Kozakova M et al (1999) Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 99:482–490

    PubMed  CAS  Google Scholar 

  75. Sun S, Weil MH, Tang W et al (2001) Alpha-methylnorepinephrine, a selective alpha-2 adrenergic agonist for cardiac resuscitation. J Am Coll Cardiol 37:951–956

    Article  PubMed  CAS  Google Scholar 

  76. Klouche K, Weil MH, Sun S et al (2003) A comparison of alpha-methylnorepinephrine, vasopressin and epinephrine for cardiac resuscitation. Resuscitation 57:93–100

    Article  PubMed  CAS  Google Scholar 

  77. Ishibashi Y, Duncker DJ, Bache RJ (1997) Endogenous nitric oxide masks alpha2-adrenergic coronary vasoconstriction during exercise in the ischemic heart. Circ Res 80:196–207

    PubMed  CAS  Google Scholar 

  78. Fries M, Tang W, Castillo C et al (2004) Detrimental effects of epinephrine on microcirculatory blood flow in a porcine model of cardiac arrest. Crit Care Med 32(Suppl):A56

    Article  Google Scholar 

  79. Ristagno G, Sun S, Chang YT et al (2005) Epinephrine reduces cerebral microcirculatory blood flow during CPR. Crit Care Med 33(Suppl):A95

    Google Scholar 

  80. Povoas HP, Weil MH, Tang W et al (2002) Predicting the success of defibrillation by electrocardiographic analysis. Resuscitation 53:77–82

    Article  PubMed  Google Scholar 

  81. Young C, Bisera J, Gehman S et al (2004) Amplitude spectrum area: measuring the probability of successful defibrillation as applied to human data. Crit Care Med 32(9 Suppl):S356–S358

    Article  PubMed  Google Scholar 

  82. Weil MH, Bisera J, Trevino RP et al (1985) Cardiac output and end-tidal carbon dioxide. Crit Care Med 13:907–909

    Article  PubMed  CAS  Google Scholar 

  83. Pernat A, Weil MH, Sun S et al (2003) Stroke volumes and end-tidal carbon dioxide generated by precordial compression during ventricular fibrillation. Crit Care Med 31:1819–1823

    Article  PubMed  Google Scholar 

  84. Kalenda Z (1978) The capnogram as a guide to the efficacy of cardiac massage. Resuscitation 6:259–263

    Article  PubMed  CAS  Google Scholar 

  85. Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 318:607–611

    Article  PubMed  CAS  Google Scholar 

  86. Tang W, Weil MH, Gazmuri RJ et al (1991) Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation 84:2101–2107

    PubMed  CAS  Google Scholar 

  87. Fries M, Weil MH, Chang YT et al (2006) Capillary blood flow during cardiopulmonary resuscitation is predictive of outcome. Resuscitation (in press≪QA5≫)

    Google Scholar 

  88. Pernat A, Weil MH, Tang W et al. (2001) Optimizing timing of ventricular defibrillation. Crit Care Med 29:2360–2365

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Ristagno, G., Gullo, A., Tang, W., Weil, M.H. (2007). Updates on Cardiac Arrest and Cardiopulmonary Resuscitation. In: Perioperative Critical Care Cardiology. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-0558-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0558-7_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0557-0

  • Online ISBN: 978-88-470-0558-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics