Skip to main content

Other Neurodegenerative Conditions

  • Chapter
Neurodegeneration in Multiple Sclerosis

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 1327 Accesses

Abstract

Neurodegenerative diseases of the central nervous system (CNS) represent a large group of sporadic or inherited conditions which share the fundamental physiopathological feature of a progressive dysfunction and death of neurons belonging to different systems, which ultimately leads to regional and global brain atrophy. Although considerable advances in understanding the etiopathogenesis of these diseases have been made, to date no treatment capable of halting the progression of neurodegeneration in any of these diseases is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mascalchi M, Filippi M, Floris R et al (2005) Diffusion-weighted MR of the brain: methodology and clinical applications. Radiol Med (Turin) 109:155–197

    Google Scholar 

  2. Ramani A, Jensen JH, Helpern JA (2006) Quantitative MR imaging in Alzheimer’s disease. Radiology 241:26–43

    Article  PubMed  Google Scholar 

  3. Gill SS, Small RK, Thomas DG et al (1989) Brain metabolites as 1HNMR markers of neuronal and glial disorders. NMR Biomed 2:196–200

    Article  PubMed  CAS  Google Scholar 

  4. Ashburner J, Csernansky JG, Davatzikos C et al (2003) Computer-assisted imaging to assess brain structure in healthy and diseased brain. Lancet Neurol 2:79–88

    Article  PubMed  Google Scholar 

  5. Bozzali M, Franceschi M, Falini A et al (2001) Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology 57:1135–1137

    PubMed  CAS  Google Scholar 

  6. Mascalchi M, Lolli F, Della Nave R et al (2004) Volumetric, diffusion and magnetization transfer MR imaging of the brain in individuals with Huntington’s disease. Radiology 232:867–873

    Article  PubMed  Google Scholar 

  7. Falini A, Bozzali M, Magnani G et al (2005) A whole brain MR spectroscopy study from patients with Alzheimer’s disease and mild cognitive impairment. NeuroImage 26:1159–1163

    Article  PubMed  CAS  Google Scholar 

  8. Blennow K, de Leon M, Zetterberg H (2006) Alzheimer’s disease. Lancet Neurol 368:387–403

    Article  CAS  Google Scholar 

  9. Jack CR, Shiung MM, Gunter JL et al (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62:591–600

    PubMed  Google Scholar 

  10. Testa C, Laakso MP, Sabattoli F et al (2004) A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer’s disease. J Magn Reson Imaging 19:274–282

    Article  PubMed  Google Scholar 

  11. Baron JC, Chételat G, Desgranges B et al (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. NeuroImage 14:298–309

    Article  PubMed  CAS  Google Scholar 

  12. Chételat G, Landeau B, Eustache F et al (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage 27:934–946

    Article  PubMed  Google Scholar 

  13. Frisoni G, Testa C, Sabattoli F et al (2005) Structural correlates of early and late onset Alzheimer’s disease: voxel based morphometry study. J Neurol Neurosurg Psychiat 76:112–114

    Article  PubMed  CAS  Google Scholar 

  14. Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, Rossor MN (1996) Presymptomatic hippocampal atrophy in Alzheimer’s disease: a longitudinal MRI study. Brain 119:2001–2007

    Article  PubMed  Google Scholar 

  15. Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen J, Rossor M (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358:201–205

    Article  PubMed  CAS  Google Scholar 

  16. Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, Fox NC (2006) Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol 5:828–834

    Article  PubMed  Google Scholar 

  17. Kantarci K, Jack CR, Yu YC et al (2001) Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology 219:101–107

    PubMed  CAS  Google Scholar 

  18. Sandson TA, Felician O, Edelman RR, Warach S (1999) Diffusion-weighted magnetic resonance imaging in Alzheimer’s disease. Dementia Geriatr Cogn Disord 10:166–171

    Article  CAS  Google Scholar 

  19. Xie S, Xiao JX, Gong GL et al (2006) Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology 66:1845–1849

    Article  PubMed  CAS  Google Scholar 

  20. Umahara T, Tsuchiya K, Ikeda K et al (2002) Demonstration and distribution of taupositive glial coiled body-like structures in white matter and white matter threads in early onset Alzheimer’s disease. Neuropathology 22:9–12

    Article  PubMed  Google Scholar 

  21. Hanyu H, Asano T, Iwamoto T et al (2000) Magnetization transfer measurements of the hippocampus in patients with Alzheimer’s disease, vascular dementia, and other types of dementia. AJNR Am J Neuroradiol 21:1235–1242

    PubMed  CAS  Google Scholar 

  22. Valenzuela MJ, Sachdev P (2001) Magnetic resonance spectroscopy in AD. Neurology 56:592–598

    PubMed  CAS  Google Scholar 

  23. Block W, Jessen F, Traber F et al (2002) Regional N-acetylaspartate reduction in the hippocampus detected with fast proton magnetic resonance spectroscopic imaging in patients with Alzheimer disease. Arch Neurol 59:828–834

    Article  PubMed  Google Scholar 

  24. Godbolt AK, Waldman AD, MacManus DG et al (2006) MRS shows abnormalities before symptoms in familial Alzheimer disease. Neurology 66:718–722

    Article  PubMed  CAS  Google Scholar 

  25. Jessen F, Traeber F, Freymann K et al (2006) Treatment monitoring and response prediction with proton MR spectroscopy in AD. Neurology 67:528–530

    Article  PubMed  CAS  Google Scholar 

  26. Backman L, Andersson JL, Nyberg L et al (1999) Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 52:1861–1870

    PubMed  CAS  Google Scholar 

  27. Rémy F, Mirrashed F, Campbell B, Richter W (2005) Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. NeuroImage 25:253–266

    Article  PubMed  Google Scholar 

  28. Aylward EH, Brandt J, Codori AM et al (1994) Reduced basal ganglia volume associated with the gene for Huntington’s disease in asymptomatic at-risk persons. Neurology 44:823–828

    PubMed  CAS  Google Scholar 

  29. Rosas HD, Goodman J, Chen YI et al (2001) Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 57:1025–1028

    PubMed  CAS  Google Scholar 

  30. Aylward EH, Codori AM, Rosenblatt A et al (2000) Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington’s disease. Mov Disord 15:552–560

    Article  PubMed  CAS  Google Scholar 

  31. Kassubek J, Juengling FD, Kioschies T et al (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiat 75:213–220

    PubMed  CAS  Google Scholar 

  32. Gavazzi C, Della Nave R, Petralli R et al (2007) Combining functional and structural MR imaging of the brain in Huntington disease. J Comput Assist Tomogr (in press)

    Google Scholar 

  33. Thieben MJ, Duggins AJ, Good CD et al (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828

    Article  PubMed  CAS  Google Scholar 

  34. Seppi K, Schocke MF, Mair KJ et al (2006) Diffusion-weighted imaging in Huntington’s disease. Mov Disord 21(7):1043–1047

    Article  PubMed  Google Scholar 

  35. Jenkins B, Koroshetz W, Beal MF, Rosen B (1993) Evidence for an energy metabolism defect in Huntington’s disease using localized proton spectroscopy. Neurology 43:2689–2695.

    PubMed  CAS  Google Scholar 

  36. Harms L, Meierkord H, Timm G et al (1997) Decreased N-acetylaspartate/choline ratio and increased lactate in the frontal lobe of patients with Huntington’s disease: a proton magnetic resonance spectroscopy study. J Neurol Neurosurg Psychiat 62:27–30

    Article  PubMed  CAS  Google Scholar 

  37. Jenkins BG, Rosas HD, Chen CI et al (1998) 1HNMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 50:1357–1365

    PubMed  CAS  Google Scholar 

  38. Tabrizi SJ, Blamire AM, Manners DN et al (2003) Creatine therapy for Huntington’s disease: clinical and MRS findings in a 1-year pilot study. Neurology 61:141–142

    PubMed  CAS  Google Scholar 

  39. Reading SAJ, Dziorny AC, Peroutka LA et al (2004) Functional brain changes in presymptomatic Huntington’s disease. Ann Neurol 55:879–883

    Article  PubMed  Google Scholar 

  40. Paulsen JS, Zimbelman JL, Hinton SC et al (2004) fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s disease. AJNR Am J Neuroradiol 25:1715–1721

    PubMed  Google Scholar 

  41. Burton EJ, McKeith IG, Burn DJ et al (2004) Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127:791–800

    Article  PubMed  Google Scholar 

  42. Ramírez-Ruiz B, Martí MJ, Tolosa E et al (2005) Longitudinal evaluation of cerebral morphological changes in Parkinson’s disease with and without dementia. J Neurol 252:1345–1352

    Article  PubMed  Google Scholar 

  43. Nagano-Saito A, Washimi Y, Arahata Y et al (2005) Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology 64:224–229

    PubMed  CAS  Google Scholar 

  44. Summerfield C, Junqué C, Tolosa E et al (2005) Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 62:281–285

    Article  PubMed  Google Scholar 

  45. Price S, Paviour D, Scahill R et al (2004) Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson’s disease. NeuroImage 23:663–669

    Article  PubMed  Google Scholar 

  46. Hanyu H, Asano T, Sakurai H et al (2001) Magnetisation transfer measurements of the subcortical grey and white matter in Parkinson’s disease with and without dementia and in progressive supranuclear palsy. Neuroradiology 43:542–546

    Article  PubMed  CAS  Google Scholar 

  47. Tambasco N, Pelliccioli GP, Chiarini P et al (2003) Magnetization transfer changes of gray and white matter in Parkinson’s disease. Neuroradiology 45:224–230

    PubMed  CAS  Google Scholar 

  48. Eckert T, Sailer M, Kaufmann J et al (2004) Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy and healthy controls using magnetization transfer imaging. NeuroImage 21:229–235

    Article  PubMed  Google Scholar 

  49. Seppi K, Schocke MF, Esterhammer R et al (2003) Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the Parkinson variant of multiple system atrophy. Neurology 60:922–927

    Article  PubMed  CAS  Google Scholar 

  50. Schocke MF, Seppi K, Esterhammer R et al (2004) Trace of diffusion tensor differentiates the Parkinson variant of multiple system atrophy and Parkinson’s disease. NeuroImage 21:1443–1451

    Article  PubMed  Google Scholar 

  51. Yoshikawa K, Nakata Y, Yamada K, Nakagawa M (2004) Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiat 75:481–484

    Article  PubMed  CAS  Google Scholar 

  52. Scherfler C, Schocke MF, Seppi K et al (2006) Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain 129:538–542

    Article  PubMed  Google Scholar 

  53. Bowen BC, Block RE, Sanchez-Ramos J et al (1995) Proton MR spectroscopy of the brain in 14 patients with Parkinson disease. AJNR Am J Neuroradiol 16:61–68

    PubMed  CAS  Google Scholar 

  54. Hu MT, Taylor-Robinson SD, Chaudhuri KR et al (2000) Cortical dysfunction in non-demented Parkinson’s disease patients: a combined 31P-MRS and 18FDG-PET study. Brain 123:340–352

    Article  PubMed  Google Scholar 

  55. Haslinger B, Erhard P, Kampfe N et al (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124:558–570

    Article  PubMed  CAS  Google Scholar 

  56. Klockgether T, Skalej M, Wedekind D et al (1998) Autosomal dominant cerebellar ataxia type I: MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 121:1678–1693

    Google Scholar 

  57. Guerrini L, Lolli F, Ginestroni A et al (2004) Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2: a volumetric, diffusion and quantitative proton spectroscopy MR study. Brain 127:1785–1795

    Article  PubMed  CAS  Google Scholar 

  58. Brenneis C, Bosch SM, Schocke M et al (2003) Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 14:1799–1802

    Article  PubMed  Google Scholar 

  59. Mascalchi M, Tosetti M, Plasmati R et al (1998) Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 43:244–252

    Article  PubMed  CAS  Google Scholar 

  60. Boesch SM, Schoecke M, Burk K et al (2001) Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging 13:553–539

    Article  PubMed  CAS  Google Scholar 

  61. Viau M, Machand L, Bard C, Boulanger Y (2005) 1H magnetic resonance spectroscopy of autosomal ataxias. Brain Res 1049:191–202

    Article  PubMed  CAS  Google Scholar 

  62. Richter S, Dimitrova A, Maschke M et al (2005) Degree of cerebellar ataxia correlates with three-dimensional MRI-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 54:23–27

    Article  PubMed  Google Scholar 

  63. Della Nave R, Foresti S, Tessa C et al (2004) ADC mapping of neurodegeneration in the brainstem and cerebellum in patients with progressive ataxias. NeuroImage 22:698–705

    Article  PubMed  Google Scholar 

  64. Mascalchi M, Cosottini M, Lolli F et al (2002) Proton MR spectroscopy of the cerebellum and pons in patients with degenerative ataxia. Radiology 223:371–378

    Article  PubMed  Google Scholar 

  65. Terakawa H, Abe K, Watanabe Y et al (1999) Proton magnetic resonance spectroscopy (1H MRS) in patients with sporadic cerebellar degeneration. J Neuroimaging 9:72–77

    PubMed  CAS  Google Scholar 

  66. Ellis CM, Suckling J, Amaro E Jr, et al (2001) Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology 57:1571–1578

    PubMed  CAS  Google Scholar 

  67. Valsasina P, Agosta F, Benedetti B et al (2006) Diffusion anisotropy of the cervical cord is strictly associated with disability in ALS. J Neurol Neurosurg Psychiat [epub 9 Oct 2006; doi:10.1136/jnnp.2006.100032]

    Google Scholar 

  68. Ellis CM, Simmons A, Jones DK et al (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    PubMed  CAS  Google Scholar 

  69. Sach M, Winkler G, Glauche V et al (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350

    Article  PubMed  Google Scholar 

  70. Ulug AM, Grunewald T, Lin MT et al (2004) Diffusion tensor imaging in the diagnosis of primary lateral sclerosis. J Magn Reson Imaging 19:34–39

    Article  PubMed  Google Scholar 

  71. Tanabe JL, Vermathen M, Miller R et al (1998) Reduced MTR in the corticospinal tract and normal T2 in amyotrophic lateral sclerosis. Magn Reson Imaging 16:1163–1169

    Article  PubMed  CAS  Google Scholar 

  72. Chan S, Shungu DC, Akinwande D et al (1999) Motor neuron diseases: comparison of single voxel-proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology 212:763–769

    PubMed  CAS  Google Scholar 

  73. Kalra S, Cashman NR, Genge A, Arnold DL (1998) Recovery of N-acetylaspartate in corticomotor neurons of patients with ALS after riluzole therapy. Neuroreport 9:1757–1761

    Article  PubMed  CAS  Google Scholar 

  74. Konrad C, Henningsen H, Bremer J et al (2002) Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res 143:51–56

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Mascalchi, M. (2007). Other Neurodegenerative Conditions. In: Filippi, M., Rovaris, M., Comi, G. (eds) Neurodegeneration in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-0391-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0391-0_14

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0390-3

  • Online ISBN: 978-88-470-0391-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics