Skip to main content

Exercise-Induced Mitochondrial Biogenesis in Skeletal Muscle

  • Chapter

Abstract

Regularly performed endurance exercise has a number of health benefits, including improvements in cardiovascular function, muscle metabolism, and increased work capacity. The increase in endurance is a result of greater oxygen delivery and extraction by the exercising muscle. Oxygen extraction is a result of an improved capillary-to-fiber ratio, as well as a higher mitochondrial content within muscle. The increase in mitochondrial content is a well-established and dramatic adaptation within the exercised muscle, but the molecular mechanisms underlying this change in muscle phenotype are just beginning to be clarified. An understanding of the cellular processes involved could help in the development of therapeutic applications other than exercise, and may help us better comprehend the pathology of mitochondrial diseases. This increase in mitochondrial content which occurs as a result of regular exercise is referred to as mitochondrial biogenesis. The process is complex because mitochondria are composed of proteins encoded by both nuclear and mitochondrial DNA (mtDNA). The major steps involved include: (1) signaling events leading to transcription, brought about by each exercise bout; (2) transcriptional regulation of nuclear-encoded genes encoding mitochondrial proteins, mainly mediated by the coactivator PGC-1α; (3) control of mitochondrial DNA gene expression by the transcription factor Tfam; (4) mitochondrial fission and fusion mechanisms; (5) import of nuclear-derived gene products into the mitochondrion via the protein import machinery; and (6) assembly of nuclear- and mitochondrially-encoded subunits into functional holoenzyme complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chabi B, Adhihetty PJ, Ljubicic V, Hood DA (2005) How is mitochondrial biogenesis affected in mitochondrial disease? Med Sci Sports Exerc 37:2102–2110

    Article  PubMed  CAS  Google Scholar 

  2. Hood DA, Irrcher I, Ljubicic V, Joseph AM (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209:2265–2275

    Article  PubMed  CAS  Google Scholar 

  3. Koulmann N, Bigard AX (2006) Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 452:125–139

    Article  PubMed  CAS  Google Scholar 

  4. Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  5. Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  PubMed  CAS  Google Scholar 

  6. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

    Article  PubMed  CAS  Google Scholar 

  7. Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286:81–89

    Article  PubMed  CAS  Google Scholar 

  8. Schreiber SN, Emter R, Hock MB et al (2004)The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator lalpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 101:6472–6477

    Article  PubMed  CAS  Google Scholar 

  9. Puigserver P, Adelmant G, Wu Z et al (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286:1368–1371

    Article  PubMed  CAS  Google Scholar 

  10. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68:1145–1155

    Article  PubMed  CAS  Google Scholar 

  11. Fan M, Rhee J, St-Pierre J et al (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: Modulation by p38 MAPK. Genes Dev 18:278–289

    Article  PubMed  CAS  Google Scholar 

  12. Boppart MD, Asp S, Wojtaszewski JF et al (2000) Marathon running transiently increases c-Jun NH2-terminal kinase and p38 activities in human skeletal muscle. J Physiol 526 Pt 3:663–669

    Google Scholar 

  13. Irrcher I, Adhihetty PJ, Sheehan T et al (2003) PPARgamma coactivator-lalpha expression during thyroid hormone-and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol 284:C1669–C1677

    PubMed  CAS  Google Scholar 

  14. Russell AP, Feilchenfeldt J, Schreiber S et al (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881

    Article  PubMed  CAS  Google Scholar 

  15. Akimoto T, Pohnert SC, Li P et al (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593

    Article  PubMed  CAS  Google Scholar 

  16. Teyssier C, Ma H, Emter R et al (2005) Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev 19:1466–1473

    Article  PubMed  CAS  Google Scholar 

  17. Lerin C, Rodgers JT, Kalume DE et al (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3:429–438

    Article  PubMed  CAS  Google Scholar 

  18. Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  PubMed  CAS  Google Scholar 

  19. Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886

    Article  PubMed  CAS  Google Scholar 

  20. Norrbom J, Sundberg CJ, Ameln H et al (2004) PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96:189–194

    Article  PubMed  CAS  Google Scholar 

  21. Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858

    Article  PubMed  CAS  Google Scholar 

  22. Terada S, Goto M, Kato M et al (2002) Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296:350–354

    Article  PubMed  CAS  Google Scholar 

  23. Terada S, Kawanaka K, Goto M et al (2005) Effects of high-intensity intermittent swimming on PGC-1alpha protein expression in rat skeletal muscle. Acta Physiol Scand 184:59–65

    Article  PubMed  CAS  Google Scholar 

  24. Cartoni R, Leger B, Hock MB et al (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567:349–358

    Article  PubMed  CAS  Google Scholar 

  25. Taylor EB, Lamb JD, Hurst RW et al (2005) Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: Effects of time and intensity. Am J Physiol Endocrinol Metab 289:E960–E968

    Article  PubMed  CAS  Google Scholar 

  26. Handschin C, Rhee J, Lin J et al (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116

    Article  PubMed  CAS  Google Scholar 

  27. McKinsey TA, Zhang CL, Olson EN (2002) MEF2: A calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27:40–47

    Article  PubMed  CAS  Google Scholar 

  28. Akimoto T, Sorg BS, Yan Z (2004) Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1alpha promoter activity in skeletal muscles of living mice. Am J Physiol Cell Physiol 287:C790–C796

    Article  PubMed  CAS  Google Scholar 

  29. Leone TC, Lehman JJ, Finck BN et al (2005) PGC-1alpha deficiency causes multisystem energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101

    Article  PubMed  CAS  Google Scholar 

  30. Arany Z, He H, Lin J et al (2005) Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1:259–271

    Article  PubMed  CAS  Google Scholar 

  31. Lin J, Wu PH, Tarr PTet al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  PubMed  CAS  Google Scholar 

  32. Hennig R, Lomo T(1985) Firing patterns of motor units in normal rats. Nature 314:164–166

    Article  PubMed  CAS  Google Scholar 

  33. Pette D, Vrbova G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    Article  PubMed  CAS  Google Scholar 

  34. Williams RS, Salmons S, Newsholme EA et al (1986) Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem 261:376–380

    PubMed  CAS  Google Scholar 

  35. Horsley V, Friday BB, Matteson S et al (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153:329–338

    Article  PubMed  CAS  Google Scholar 

  36. Garcia-Roves PM, Huss J, Holloszy JO (2006) Role of calcineurin in exerciseinduced mitochondrial biogenesis. Am J Physiol Endocrinol Metab 290:E1172–E1179

    Article  PubMed  CAS  Google Scholar 

  37. Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  PubMed  CAS  Google Scholar 

  38. Chin ER (2005) Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 99:414–423

    Article  PubMed  CAS  Google Scholar 

  39. Freyssenet D, DiCarlo M, Escobar P et al (1999) Zidovudine (AZT) induced alterations in mitochondrial biogenesis in rat striated muscles. Can J Physiol Pharmacol 77:29–35

    Article  PubMed  CAS  Google Scholar 

  40. Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79:675–686

    PubMed  CAS  Google Scholar 

  41. Chinnery PF, Turnbull DM (2001) Epidemiology and treatment of mitochondrial disorders. Am J Med Genet 106:94–101

    Article  PubMed  CAS  Google Scholar 

  42. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    Article  PubMed  Google Scholar 

  43. Chomyn A, Attardi G (2003) MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun 304:519–529

    Article  PubMed  CAS  Google Scholar 

  44. Castellani R, Hirai K, Aliev G et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360

    Article  PubMed  CAS  Google Scholar 

  45. Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8:192–197

    PubMed  CAS  Google Scholar 

  46. Sudoyo H, Suryadi H, Sitorus N et al (2003) Mitochondrial genome and susceptibility to diabetes mellitus. Adv Exp Med Biol 531:19–36

    PubMed  CAS  Google Scholar 

  47. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  48. Powers SK, Criswell D, Lawler J et al (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266:R375–R380

    PubMed  CAS  Google Scholar 

  49. Ambrosio G, Zweier JL, Duilio C et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268:18532–18541

    PubMed  CAS  Google Scholar 

  50. Richter C (1988) Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett 241:1–5

    Article  PubMed  CAS  Google Scholar 

  51. McArdle A, van der MJ, Close GL et al (2004) Role of mitochondrial Superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space. Am J Physiol Cell Physiol 286:C1152–C1158

    Article  PubMed  CAS  Google Scholar 

  52. Jackson MJ (2005) Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise. Philos Trans R Soc Lond B Biol Sci 360:2285–2291

    Article  PubMed  CAS  Google Scholar 

  53. Pattwell DM, McArdle A, Morgan JE et al (2004) Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med 37:1064–1072

    Article  PubMed  CAS  Google Scholar 

  54. Barrientos A, Casademont J, Cardellach F et al (1997) Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process. Biochem Mol Med 62:165–171

    Article  PubMed  CAS  Google Scholar 

  55. Lee HC, Lu CY, Fahn HJ, Wei YH (1998) Aging-and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296

    Article  PubMed  CAS  Google Scholar 

  56. Pesce V, Cormio A, Fracasso F et al (2005) Age-related changes of mitochondrial DNA content and mitochondrial genotypic and phenotypic alterations in rat hind-limb skeletal muscles. J Gerontol A Biol Sci Med Sci 60:715–723

    PubMed  Google Scholar 

  57. Lee HC, Wei YH (2000) Mitochondrial role in life and death of the cell. J Biomed Sci 7:2–15

    Article  PubMed  CAS  Google Scholar 

  58. Suliman HB, Carraway MS, Welty-Wolf KE et al (2003) Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem 278:41510–41518

    Article  PubMed  CAS  Google Scholar 

  59. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299–E304

    PubMed  CAS  Google Scholar 

  60. Fujii N, Hayashi T, Hirshman MF et al (2000) Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal mus-cle. Biochem Biophys Res Commun 273:1150–1155

    Article  PubMed  CAS  Google Scholar 

  61. Hamilton SR, Stapleton D, O’Donnell JB Jr. et al (2001) An activating mutation in the gammal subunit of the AMP-activated protein kinase. FEBS Lett 500:163–168

    Article  PubMed  CAS  Google Scholar 

  62. Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223:217–222

    Article  PubMed  CAS  Google Scholar 

  63. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565

    Article  PubMed  CAS  Google Scholar 

  64. Stephens TJ, Chen ZP, Canny BJ et al (2002) Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282:E688–E694

    PubMed  CAS  Google Scholar 

  65. Bergeron R, Ren JM, Cadman KS et al (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340–E1346

    PubMed  CAS  Google Scholar 

  66. Zong H, Ren JM, Young LH et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987

    Article  PubMed  CAS  Google Scholar 

  67. Winder WW, Holmes BF, Rubink DS et al (2000) Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88:2219–2226

    PubMed  CAS  Google Scholar 

  68. Gordon JW, Rungi AA, Inagaki H, Hood DA (2001) Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 90:389–396

    Article  PubMed  CAS  Google Scholar 

  69. Bengtsson J, Gustafsson T, Widegren U et al (2001) Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch 443:61–66

    Article  PubMed  CAS  Google Scholar 

  70. Ferguson AB Jr., Vaughan L, Ward L (1957) A study of disuse atrophy of skeletal muscle in the rabbit. J Bone Joint Surg Am 39-A:583–596

    PubMed  Google Scholar 

  71. Bajusz E (1958) Disuse atrophy of skeletal muscle in the rat, aggravated by cortisol and various stress conditions. Can J Biochem Physiol 36:824–831

    PubMed  CAS  Google Scholar 

  72. Koski CL, Max SR (1974) Substrate utilization by the denervated rat emidiaphragm. Exp Neurol 43:547–554

    Article  PubMed  CAS  Google Scholar 

  73. Max SR (1972) Disuse atrophy of skeletal muscle: Loss of functional activity of mitochondria. Biochem Biophys Res Commun 46:1394–1398

    Article  PubMed  CAS  Google Scholar 

  74. Max SR (1973) Muscular atrophy: Activation of mitochondrial ATPase. Biochem Biophys Res Commun 52:1278–1284

    Article  PubMed  CAS  Google Scholar 

  75. Rifenberick DH, Gamble JG, Max SR (1973) Response of mitochondrial enzymes to decreased muscular activity. Am J Physiol 225:1295–1299

    PubMed  CAS  Google Scholar 

  76. Rifenberick DH, Max SR (1974) Metabolic responses of disused rat plantaris and soleus muscles to increased activity. Am J Physiol 227:1025–1029

    PubMed  CAS  Google Scholar 

  77. Rifenberick DH, Max SR (1974) Substrate utilization by disused rat skeletal muscles. Am J Physiol 226:295–297

    PubMed  CAS  Google Scholar 

  78. Bell GJ, Martin TP, Ilyina-Kakueva EI et al (1992) Altered distribution of mitochondria in rat soleus muscle fibers after spaceflight. J Appl Physiol 73:493–497

    PubMed  CAS  Google Scholar 

  79. Connor MK, Hood DA (1998) Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J Appl Physiol 84:593–598

    PubMed  CAS  Google Scholar 

  80. Booth FW, Lou W, Hamilton MT, Yan Z (1996) Cytochrome c mRNA in skeletal muscles of immobilized limbs. J Appl Physiol 81:1941–1945

    PubMed  CAS  Google Scholar 

  81. Desplanches D, Kayar SR, Sempore B et al (1990) Rat soleus muscle ultrastructure after hindlimb suspension. J Appl Physiol 69:504–508

    PubMed  CAS  Google Scholar 

  82. Pesce V, Cormio A, Fracasso F et al (2002) Rat hindlimb unloading: Soleus and Extensor Digitorum Longus histochemistry, mitochondrial DNA content and mitochondrial DNA deletions. Biosci Rep 22:115–125

    Article  PubMed  CAS  Google Scholar 

  83. Yajid F, Mercier JG, Mercier BM et al (1998) Effects of 4 wk of hindlimb suspension on skeletal muscle mitochondrial respiration in rats. J Appl Physiol 84:479–485

    PubMed  CAS  Google Scholar 

  84. Csukly K, Ascah A, Matas J et al (2006) Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. J Physiol 574:319–327

    Article  PubMed  CAS  Google Scholar 

  85. Joffe M, Savage N, Isaacs H (1983) Respiratory activities of subsarcolemmal and intermyofibrillar mitochondrial populations isolated from denervated and control rat soleus muscles. Comp Biochem Physiol B 76:783–787

    Article  PubMed  CAS  Google Scholar 

  86. Siu PM, Alway SE (2005) Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. J Physiol 565:309–323

    Article  PubMed  CAS  Google Scholar 

  87. Desplanches D, Hoppeler H, Mayet MH et al (1998) Effects of bedrest on deltoideus muscle morphology and enzymes. Acta Physiol Scand 162:135–140

    Article  PubMed  CAS  Google Scholar 

  88. Wicks KL, Hood DA (1991) Mitochondrial adaptations in denervated muscle: Relationship to muscle performance. Am J Physiol 260:C841–C850

    PubMed  CAS  Google Scholar 

  89. Babij P, Booth FW(1988) Alpha-actin and cytochrome c mRNAs in atrophied adult rat skeletal muscle. Am J Physiol 254:C651–C656

    PubMed  CAS  Google Scholar 

  90. Koonen DP, Benton CR, Arumugam Y et al (2004) Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol Metab 286:E1042–E1049

    Article  PubMed  CAS  Google Scholar 

  91. Washington TA, Reecy JM, Thompson RW et al (2004) Lactate dehydrogenase expression at the onset of altered loading in rat soleus muscle. J Appl Physiol 97:1424–1430

    Article  PubMed  CAS  Google Scholar 

  92. Cogswell AM, Stevens RJ, Hood DA (1993) Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol 264:C383–C389

    PubMed  CAS  Google Scholar 

  93. Krieger DA, Tate CA, Millin-Wood J, Booth FW (1980) Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol 48:23–28

    PubMed  CAS  Google Scholar 

  94. Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA (2005) Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol 289:C994–C1001

    Article  PubMed  CAS  Google Scholar 

  95. Primeau AJ, Adhihetty PJ, Hood DA (2002) Apoptosis in heart and skeletal muscle. Can J Appl Physiol 27:349–395

    PubMed  CAS  Google Scholar 

  96. Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9–16

    Article  PubMed  CAS  Google Scholar 

  97. Nomura K, Imai H, Koumura T et al (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351:183–193

    Article  PubMed  CAS  Google Scholar 

  98. Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  PubMed  CAS  Google Scholar 

  99. Dejean LM, Martinez-Caballero S, Kinnally KW (2006) Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ 13:1387–1395

    Article  PubMed  CAS  Google Scholar 

  100. Siu PM, Alway SE (2006) Deficiency of the Bax gene attenuates denervationinduced apoptosis. Apoptosis 11:967–981

    Article  PubMed  CAS  Google Scholar 

  101. Muller-Hocker J (1990) Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: An age-related alteration. J Neurol Sci 100:14–21

    Article  PubMed  CAS  Google Scholar 

  102. Muller-Hocker J, Schneiderbanger K, Stefani FH, Kadenbach B (1992) Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing—A cy to chemicalimmunohisto chemical study. Mutat Res 275:115–124

    PubMed  CAS  Google Scholar 

  103. Boffoli D, Scacco SC, Vergari R et al (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226:73–82

    PubMed  CAS  Google Scholar 

  104. Cooper JM, Mann VM, Schapira AH (1992) Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing. J Neurol Sci 113:91–98

    Article  PubMed  CAS  Google Scholar 

  105. Hagen JL, Krause DJ, Baker DJ et al (2004) Skeletal muscle aging in F344BN F1-hybrid rats: I. Mitochondrial dysfunction contributes to the age-associated reduction in VO2max. J Gerontol A Biol Sci Med Sci 59:1099–1110

    PubMed  Google Scholar 

  106. Rooyackers OE, Adey DB, Ades PA, Nair KS (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 93:15364–15369

    Article  PubMed  CAS  Google Scholar 

  107. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526 Pt 1:203–210

    Google Scholar 

  108. Drew B, Phaneuf S, Dirks A et al (2003) Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 284:R474–R480

    PubMed  CAS  Google Scholar 

  109. Brierley EJ, Johnson MA, James OF, Turnbull DM (1996) Effects of physical activity and age on mitochondrial function. QJM 89:251–258

    PubMed  CAS  Google Scholar 

  110. Kent-Braun JA, Ng AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89:1072–1078

    PubMed  CAS  Google Scholar 

  111. Lezza AM, Boffoli D, Scacco S et al (1994) Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochem Biophys Res Commun 205:772–779

    Article  PubMed  CAS  Google Scholar 

  112. Zhang C, Liu VW, Addessi CL et al (1998) Differential occurrence of mutations in mitochondrial DNA of human skeletal muscle during aging. Hum Mutat 11:360–371

    Article  PubMed  CAS  Google Scholar 

  113. Fayet G, Jansson M, Sternberg D et al (2002) Ageing muscle: Clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul Disord 12:484–493

    Article  PubMed  Google Scholar 

  114. Kopsidas G, Kovalenko SA, Kelso JM, Linnane AW (1998) An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Mutat Res 421:27–36

    PubMed  CAS  Google Scholar 

  115. Pesce V, Cormio A, Fracasso F et al (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 30:1223–1233

    Article  PubMed  CAS  Google Scholar 

  116. Wanagat J, Cao Z, Pathare P, Aiken JM (2001) Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J15:322–332

    Article  PubMed  CAS  Google Scholar 

  117. Bua EA, McKiernan SH, Wanagat J et al (2002) Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. J Appl Physiol 92:2617–2624

    PubMed  Google Scholar 

  118. Lopez ME, Van Zeeland NL, Dahl DB et al (2000) Cellular phenotypes of ageassociated skeletal muscle mitochondrial abnormalities in rhesus monkeys. Mutat Res 452:123–138

    PubMed  CAS  Google Scholar 

  119. Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  120. Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87:465–470

    PubMed  CAS  Google Scholar 

  121. .Capel F, Buffiere C, Patureau MP, Mosoni L (2004) Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats. Mech Ageing Dev 125:367–373

    Article  PubMed  CAS  Google Scholar 

  122. Lee J, Yu BP, Herlihy JT (1999) Modulation of cardiac mitochondrial membrane fluidity by age and calorie intake. Free Radic Biol Med 26:260–265

    Article  PubMed  CAS  Google Scholar 

  123. Muscari C, Giaccari A, Stefanelli C et al (1996) Presence of a DNA-4236 bp deletion and 8-hydroxy-deoxyguanosine in mouse cardiac mitochondrial DNA during aging. Aging (Milano) 8:429–433

    CAS  Google Scholar 

  124. Pansarasa O, Bertorelli L, Vecchiet J et al (1999) Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic Biol Med 27:617–622

    Article  PubMed  CAS  Google Scholar 

  125. Ji LL, Wu E, Thomas DP (1991) Effect of exercise training on antioxidant and metabolic functions in senescent rat skeletal muscle. Gerontology 37:317–325

    PubMed  CAS  Google Scholar 

  126. Sohal RS, Arnold LA, Sohal BH (1990) Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radic Biol Med 9:495–500

    Article  PubMed  CAS  Google Scholar 

  127. Tonkonogi M, Fernstrom M, Walsh B et al (2003) Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Arch 446:261–269

    PubMed  CAS  Google Scholar 

  128. Dirks A, Leeuwenburgh C (2002) Apoptosis in skeletal muscle with aging. Am J Physiol Regul Integr Comp Physiol 282:R519–R527

    PubMed  CAS  Google Scholar 

  129. Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36:27–39

    Article  PubMed  CAS  Google Scholar 

  130. Barrientos A, Casademont J, Rotig A et al (1996) Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle. Biochem Biophys Res Commun 229:536–539

    Article  PubMed  CAS  Google Scholar 

  131. Coggan AR, Spina RJ, King DS et al (1992) Skeletal muscle adaptations to endurance training in 60to 70-yr-old men and women. J Appl Physiol 72:1780–1786

    PubMed  CAS  Google Scholar 

  132. 0rlander J, Aniansson A (1980) Effect of physical training on skeletal muscle metabolism and ultrastructure in 70 to 75-year-old men. Acta Physiol Scand 109:149–154

    Article  Google Scholar 

  133. Short KR, Vittone JL, Bigelow ML et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896

    Article  PubMed  CAS  Google Scholar 

  134. Taivassalo T, Shoubridge EA, Chen J et al (2001) Aerobic conditioning in patients with mitochondrial myopathies: Physiological, biochemical, and genetic effects. Ann Neurol 50:133–141

    Article  PubMed  CAS  Google Scholar 

  135. Fielding RA, Meydani M (1997) Exercise, free radical generation, and aging. Aging (Milano) 9:12–18

    CAS  Google Scholar 

  136. Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205

    Article  PubMed  CAS  Google Scholar 

  137. Gunduz F, Senturk UK, Kuru O et al (2004) The effect of 1 year’s swimming exercise on oxidant stress and antioxidant capacity in aged rats. Physiol Res 53:171–176

    PubMed  CAS  Google Scholar 

  138. Radak Z, Naito H, Kaneko T et al (2002) Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Arch 445:273–278

    Article  PubMed  CAS  Google Scholar 

  139. Judge S, Jang YM, Smith A et al (2005) Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol 289:R1564–R1572

    PubMed  CAS  Google Scholar 

  140. Sandri M, Carraro U, Podhorska-Okolov M et al (1995) Apoptosis, DNA damage and ubiquitin expression in normal and mdx muscle fibers after exercise. FEBS Lett 373:291–295

    Article  PubMed  CAS  Google Scholar 

  141. Siu PM, Bryner RW, Martyn JK, Alway SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18:1150–1152

    PubMed  CAS  Google Scholar 

  142. Allen DL, Linderman JK, Roy RR et al (1997) Apoptosis: A mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 273:C579–C587

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hood, D.A., Chabi, B., Menzies, K., O’Leary, M., Walkinshaw, D. (2007). Exercise-Induced Mitochondrial Biogenesis in Skeletal Muscle. In: Stocchi, V., De Feo, P., Hood, D.A. (eds) Role of Physical Exercise in Preventing Disease and Improving the Quality of Life. Springer, Milano. https://doi.org/10.1007/978-88-470-0376-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0376-7_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0375-0

  • Online ISBN: 978-88-470-0376-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics