Skip to main content

Somatic Embryogenesis and Genetic Transformation of Carnation (Dianthus caryophyllus L.)

  • Chapter
  • First Online:

Abstract

The chapter summarizes the progress of somatic embryogenesis and genetic transformation of carnation obtained during the last 40 years. Factors that determine the processes of indirect and direct somatic embryogenesis of this ornamental plant are described and discussed. The present chapter outlines the current results in the field and focuses on the primary guidelines of genetic transformation of carnation. Future applications and intentions identified by Bulgarian research group in this direction have also been highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ammirato PV (1985) Patterns of development in culture. In: Henke RR, Hughes KW, Constantin MP, Hollander A (eds) Tissue culture and forestry and agriculture. Plenum, New York, pp 9–29

    Chapter  Google Scholar 

  • Arici SE, Koc NK (2009) Regeneration and Agrobacterium mediated transformation studies in carnation (Dianthus caryophyllus L. cv. Turbo). Afr J Biotechnol 8:6094–6100

    CAS  Google Scholar 

  • Boycheva I, Vassileva V, Iantcheva A (2014) Histone acetyltransferases in plant development and plasticity. Curr Genomics 15:28–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carman JG (1990) Embryogenic cell in plant tissue cultures: occurrence and behaviour. In Vitro Cell Dev Biol Plant 26:746–753

    Article  Google Scholar 

  • Davis MJ, Baker R, Hanan JJ (1977) Clonal multiplication of carnation by micropropagation. J Am Soc Hortic Sci 102:48–53

    CAS  Google Scholar 

  • De Jong AJ, Schmidt EDL, De Vries SC (1993) Early events in higher plant embryogenesis. Plant Mol Biol 22:367–377

    Article  PubMed  Google Scholar 

  • Demmink JF, Custers JBM, Bergervoet JHW (1987) Gynogenesis to bypass crossing barriers between diploid and tetraploid Dianthus species. Acta Horticult 216:343–344

    Article  Google Scholar 

  • Earle ED, Langhans RW (1975) Carnation propagation from shoot tips cultured in liquid medium. HortSci 10:608–610

    Google Scholar 

  • Florigene http://www.florigene.com

  • Frey L, Janick J (1991) Organogenesis in carnation. J Am Soc Hortic Sci 116:1108–1112

    Google Scholar 

  • Frey L, Saranga Y, Janick J (1992) Somatic embryogenesis in carnation. HortSci 27:63–65

    Google Scholar 

  • Gimelli F, Ginatta G, Venturo R, Positan S, Bulatti M (1984) Plantlet regeneration from petals and floral induction in vitro in the Mediterranean carnation (Dianthus caryophyllus L.). Riv Ortoflorofruttic Ital 68:107–121

    Google Scholar 

  • Holley DW, Baker R (1991) Carnation production II. Kendall Hunt Publishing Company, Dubuque, 156 pp

    Google Scholar 

  • Hollings M, Stone OM (1972) Productivity of virus tested carnation clones and the rate of reinfection with virus. J Hortic Sci 47:141–149

    Google Scholar 

  • Hughes S (1993) Carnations and pinks. The complete guide. The Crowood Press, Ramsbury, 221 pp

    Google Scholar 

  • Iantcheva A, Vlahova M, Atanassova B, Atanassov A (2005) Plant regeneration via direct organogenesis and somatic embryogenesis of two new Bulgarian spray carnation cultivars. Biotechnol Biotechnol Equip 19:15–19

    Article  CAS  Google Scholar 

  • Iantcheva A, Revalska M, Zehirov G, Vassileva V (2014) Agrobacterium mediated transformation of Medicago truncatula cell suspension culture provides a system for functional analysis. In Vitro Cell Dev Biol Plant 50:149–157

    Article  CAS  Google Scholar 

  • Kakehi M (1979) Studies on the tissue culture of carnation. V. Induction of redifferentiated plants from the petal tissue. Bull Hiroshima Agric Coll 6:159–166

    Google Scholar 

  • Kanwar JK, Kumar S (2009) Influence of growth regulators and explants on shoot regeneration in carnation. Hortic Sci 36(4):140–146

    CAS  Google Scholar 

  • Kanwar JK, Kumar S (2011) Recovery of transgenic plants by Agrobacterium-mediated genetic transformation in Dianthus caryophyllus L. (carnation). Adv Appl Sci Res 2:357–366

    CAS  Google Scholar 

  • Karami O, Kordestani GK (2007) Proliferation, shoot organogenesis and somatic embryogenesis in embryogenic callus of carnation. J Fruit Ornam Plant Res 15:167–175

    Google Scholar 

  • Karami O, Deljou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344

    Article  CAS  Google Scholar 

  • Karami O, Deljou A, Mahmodi Pour A (2007) Repetitive somatic embryogenesis in carnation on picloram supplemented media. Plant Growth Regul 50:33–39

    Article  CAS  Google Scholar 

  • Karami O, Deljou A, Kordestani GK (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus L.). Plant Cell Tissue Org Cult 92:273–280

    Article  Google Scholar 

  • Karami O (2010) Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis 37:2493–2507

    CAS  Google Scholar 

  • Kiss E, Veres A, Zs G, Nagy N, Tуth E, Varga A, Hrazdina G, Heszky L (2000) Production of transgenic carnation with antisense ACS (1-aminocyclopropane-1-carboxylate synthase) gene. Int J Hortic Sci 6:104–107

    Google Scholar 

  • Kozak D, Hampel M (1979) Studies of in vitro multiplication of carnations III. The optimization of multiplantlet formation. Acta Horticult 91:333–337

    Article  Google Scholar 

  • Lu CY, Nugent G, Wardley-Richardson T, Chandler SF, Young R, Dalling MJ (1991) Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Biotechnology 9:864–868

    Article  CAS  Google Scholar 

  • Maheswaran G, Williams EG (1984) Direct somatic embryoid formation on immature embryos of Trifolium repens, T. pratense and Medicago sativa, and rapid clonal propagation of T. repens. Ann Bot 54:201–211

    Google Scholar 

  • Miroshnichenko DN, Dolgov SV (2000) Production of transgenic hygromicin resistant carnation (Dianthus caryophyllus L.) plants after cocultivation with Agrobacterium tumefaciens. In: Cadic A(ed) Prot 19 Int’l symposium improvement ornamental plants. Acta Hort 508, ISHS

    Google Scholar 

  • Nakano M, Mii M (1993) Antibiotics stimulate somatic embryogenesis without plant growth regulators in several Dianthus cultivars. J Plant Physiol 141:721–725

    Article  CAS  Google Scholar 

  • Nontaswatsri C, Fukai S (2006) Carnation (Dianthus caryophyllus L.). In: Wang K (ed) Agrobacterium protocols, vol 2. Humana Press, Totowa, pp 311–320

    Chapter  Google Scholar 

  • Nontaswatsri C, Fukai S, Goi M (2004) Revised cocultivation conditions produce effective Agrobacterium mediated genetic transformation of carnation (Dianthus caryophyllus L.). Plant Sci 166:59–68

    Article  CAS  Google Scholar 

  • Nugent G, Wardley RT, Lu CY (1991) Plant regeneration from stem and petal of carnation (Dianthus caryophyllus L.). Plant Cell Rep 10:477–480

    Article  PubMed  CAS  Google Scholar 

  • Pareek A, Kothari SL (2003) Direct somatic embryogenesis and plant regeneration from leaf cultures of ornamental species of Dianthus. Sci Hortic 98:449–459

    Article  CAS  Google Scholar 

  • Revalska M, Vassileva V, Goormachtig S, Van Hautegem T, Ratet P, Iantcheva A (2011) Recent progress in development of Tnt1 functional genomics platform for Medicago truncatula and Lotus japonicus in Bulgaria. Curr Genomics 12:147–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu CY, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation senescence. Hortic Sci 30:970–972

    CAS  Google Scholar 

  • Szoke A, Kiss E, Toldi O, Heszky L (2006) Production of transgenic carnation with a heterologous 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase bifunctional enzyme cDNA. Int J Hortic Sci 12(4):75–79

    Google Scholar 

  • Tanaka Y, Kastumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Org Cult 80:1–24

    Article  CAS  Google Scholar 

  • Tanase K, Nishitani C, Hirakawa H, Isobe S, Tabata S, Ohmiya A, Onozaki T (2012) Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics 13:292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Altvorst AC, Koehorst H, Bruinsma T, Dons HJM (1994) Improvement of adventitious shoot formation from carnation leaf explants. Plant Cell Tiss Org Cult 37:87–90

    Article  Google Scholar 

  • Van Altvorst AC, Rikesen T, Koehorst H, Dons JJM (1995) Transgenic carnations obtained by Agrobacterium tumefaciens mediated of leaf explants. Transgenic Res 4:105–113

    Article  Google Scholar 

  • Van Altvorst AC, Koehorst HJJ, Dons JJM (1996) Transgenic carnation plants obtained by Agrobacterium tumefaciens mediated transformation of petal explants. Plant Cell Tissue Org Cult 169:169–173

    Article  Google Scholar 

  • Van Damme M, Huibers RP, Elberse J, Van den Ackerveken G (2008) Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defence-associated but required for susceptibility to downy mildew. Plant J 54:785–793

    Article  PubMed  CAS  Google Scholar 

  • Veres A, Kiss E, Tуth E, Tуth A, Heszky L (2005) Downregulation of ethylene production in carnation (Dianthus caryophyllus L.) by an apple derived ACC-cDNA. Int J Hortic Sci 11:101–104

    Google Scholar 

  • Villalobos V (1981) Floral differentiation in carnation (Dianthus caryophyllus L.) from anthers cultured in vitro. Phyton 41:71–75

    Google Scholar 

  • Williams E, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Yagi M, Onozaki T, Taneya M, Watanabe H, Yoshimura T, Yoshinari T, Ochiai Y, Shibata M (2006) Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Jpn Soc Hortic Sci 75:166–172

    Article  CAS  Google Scholar 

  • Yagi M, Kimura T, Yamamoto T, Isobe S, Tabata S, Onozaki T (2012) QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breed 30:495–509

    Article  CAS  Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, Yamaguchi H, Onozaki T (2013) Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14:734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yantcheva A, Vlahova M, Atanassova B, Atanassov A (1997a) Direct organogenesis and plant regeneration of carnation (Dianthus caryophyllus L.). Biotechnol Biotechnol Equip 11:60–65

    Article  Google Scholar 

  • Yantcheva A, Vlahova M, Todorovska E, Atanassov A (1997b) Genetic transformation of carnation (Dianthus caryophyllus L.). Biotechnol Biotechnol Equip 11:21–25

    Article  Google Scholar 

  • Yantcheva A, Vlahova M, Antanassov A (1998) Direct somatic embryogenesis and plant regeneration of carnation (Dianthus caryophyllus L.). Plant Cell Rep 18:148–153

    Article  CAS  Google Scholar 

  • Zuker A, Chang P-FL, Ahroni A, Cheah K, Woodson WR, Bressan RA, Watad AA, Hasegawa PM, Vainstein A (1995) Transformation of carnation by microprojectile bombardment. Sci Hortic 64:177–185

    Article  Google Scholar 

  • Zuker A, Tzfira T, Vainstein A (1998) Genetic engineering for cut flower improvement. Biotechol Adv 16:33–79

    Article  CAS  Google Scholar 

  • Zuker A, Ahroni A, Tzfira T, Ben-Meir H, Vainstein A (1999) Wounding by bombardment yields highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Mol Breed 5:367–375

    Article  Google Scholar 

  • Zuker A, Shklarman E, Scovel G, Ben-Meir H, Ovadis M, Neta-Sharir I, Ben-Yephet Y, Weiss D, Watad A, Vainstein A (2001) Genetic engineering of agronomic and ornamental traits in carnation. Acta Horticult 560:91–94

    Article  CAS  Google Scholar 

  • Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki I, Forkmann G, Martens S, Neta-Sharir I, Weiss D, Vainstein A (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelia Iantcheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Iantcheva, A. (2016). Somatic Embryogenesis and Genetic Transformation of Carnation (Dianthus caryophyllus L.). In: Mujib, A. (eds) Somatic Embryogenesis in Ornamentals and Its Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2683-3_7

Download citation

Publish with us

Policies and ethics