Skip to main content

Metabolism of Long-Chain Fatty Acids (LCFAs) in Methanogenesis

  • Chapter

Abstract

Anaerobic digestion (AD) is an important process for generating third-generation fuel in the form of methane from a variety of organic wastes. Efficiency of AD is dependent on inhibitory effect exerted by the substrate on methanogenic pathway. Here we assess the potential of utilizing lipid-rich waste as a suitable substrate for methane production. Anaerobic digestion of lipids leads to production of long-chain fatty acids (LCFAs) which are known to inhibit acetoclastic methanogens. The problems faced during AD of lipid-rich waste, strategies for overcoming the problems, and application of genomic tools for characterization of microbial community involved in biomethanation of this substrate are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alatriste-Mondragón F, Samar P, Cox HHJ, Ahring BK, Iranpour R (2006) Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature. Water Environ Res 78:607–636. doi:10.2175/106143006X111673

    Article  PubMed  Google Scholar 

  • Alves MM, Vieira JAM, Pereira RMA, Pereira MA, Mota M (2001) Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: Oleic acid toxicity and biodegradability. Water Res 35:264–270. doi:10.1016/s0043-1354(00)00242-6

  • Amer B, Nebel C, Bertramb HC, Mortensen G, Hermansen K, Dalsgaard TK (2013) Novel method for quantification of individual free fatty acids in milk using an in-solution derivatisation approach and gas chromatography mass spectrometry. Int Dairy J 32:199–203. doi:10.1016/j.idairyj.2013.05.016

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372. doi:10.1002/(SICI)1097-0290(19990505)63:3<363::AID-BIT13>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Bailey RS (2007) Anaerobic digestion of restaurant grease wastewater to improve methane gas production and electrical power generation potential. In: Proceedings of the Water Environment Federation, WEFTEC 2007, pp 6793–6805(13). doi:10.2175/193864707787223619

  • Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190. doi:10.1016/j.wasman.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  • Carucci C, Carrasco F, Trifoni K, Majone M, Beccari M (2005) Anaerobic digestion of food industry waste: effect of codigestion on methane yield. J Environ Eng 131:1037–1045. doi:10.1061/(ASCE)0733-9372

    Article  CAS  Google Scholar 

  • Cavaleiro AJ, Pereira MA, Alves MM (2008) Enhancement of methane production from long chain fatty acid based effluents. Bioresour Technol 99:4086–4095. doi:10.1016/j.biortech.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  • Cavaleiro AJ, Pereira MA, Stams AJM, Alves MM and Sousa DZ (2013) Non-syntrophic reactions in anaerobic unsaturated LCFA conversion by methanogenic sludges. In: 13th world congress on anaerobic digestion. Santiago de Compostela, Spain, June 25–28, 4–1, 2013

    Google Scholar 

  • Cirne DG, Paloumet X, Björnsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy 32:965–975. doi:10.1016/j.renene.2006.04.003

  • Fernández A, Sánchez A, Font X (2005) Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochem Eng J 26:22–28. doi:10.1016/j.bej.2005.02.018

    Article  Google Scholar 

  • Han MJ, Lee JW, Lee SY, Yoo JS (2008) Proteome-level responses of Escherichia coli to long-chain fatty acids and use of fatty acid inducible promoter in protein production. J Biomed Biotechnol. 12 pages. doi:10.1155/2008/735101

  • Hansen KH, Ahring BK, Raskin L (1999) Quantification of syntrophic fatty acid-b-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl Environ Microbiol 65:4767–4774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen T, Schmidt J, Angelidaki I, Marca E, Jansen J, Mosbæk H, Christensen T (2004) Method of determination of methane potentials of solid organic waste. Waste Manage 24:393–400. doi:10.1016/j.wasman.2003.09.009

    Article  CAS  Google Scholar 

  • Hatamoto M, Imachi H, Ohashi A, Harada H (2007a) Identification and cultivation of anaerobic, syntrophic long-chain fatty acid-degrading microbes from mesophilic and thermophilic methanogenic sludges. Appl Environ Microbiol 73:1332–1340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007b) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73:4119–4127. doi:10.1128/AEM.00362-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heo NH, Park SC, Kang H (2004) Effects of mixture ration and hydraulic retention time on single-stage anaerobic codigestion of food waste and waste activated sludge. J Environ Sci Health A 39:1739–1756. doi:10.1081/ESE-120037874

    Article  Google Scholar 

  • Jiang Y, Zhang Y, Banks CJ (2012) Determination of long chain fatty acids in anaerobic digesters using a rapid non-derivatisation GC-FID method. Water Sci Technol 66:741–747. doi:10.2166/wst.2012.063

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Nguyen DT, Son MS, Hoang TT (2008) The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 β-oxidation operon. Microbiology 154:1584–1598. doi:10.1099/mic.0.2008/018135-0

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Wang J (2005) A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem 6:5. doi:10.1186/1471-2091-6-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Kazakov AE, Rodionov DA, Alm E, Arkin AP, Dubchak I, Gelfand MS (2009) Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in Proteobacteria. J Bacteriol 191:52–64. doi:10.1128/JB.01175-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knobel AN, Lewis AE (2002) A mathematical model of a high sulphate wastewater anaerobic treatment system. Water Res 36:257–265. doi:10.1016/S0043-1354(01)00209-3

  • Kougias PG, Boe K, Tsapekos P, Angelidaki I (2014) Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresour Technol 153:198–205. doi:10.1016/j.biortech.2013.11.083

    Article  CAS  PubMed  Google Scholar 

  • Kuang Y (2002) Enhancing anaerobic degradation of lipids in wastewater by addition of co-substrate. School of environmental science Murdoch University, Australia. doi:10.1016/0043-1354(94)90246-1

  • Lalman JA, Bagley DM (2000) Anaerobic degradation and inhibitory effects of linoleic acid. Water Res 34:4220–4228. doi:10.1016/s0043-1354(00)00180-9

  • Lalman JA, Bagley DM (2001) Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res 35:2975–2983. doi:10.1016/s0043-1354(00)00593-5

  • Li C, Champagne P, Anderson BC (2011) Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresour Technol 102:9471–9480. doi:10.1016/j.biortech.2011.07.103

    Article  CAS  PubMed  Google Scholar 

  • Lienen T, Kleyböcker A, Verstraete W, Würdemann H (2013) Foam formation in a downstream digester of a cascade running full-scale biogas plant: Influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella. Bioresour Technol 153:1–7. doi:10.1016/j.biortech.2013.11.017

    Article  PubMed  Google Scholar 

  • Neves L, Oliveira R, Alves MM (2009) Co-digestion of cow manure, food waste and intermittent input of fat. Bioresour Technol 100:1957–1962. doi:10.1016/j.biortech.2008.10.030

    Article  CAS  PubMed  Google Scholar 

  • Neves L, Pereira MA, Mota M, Alves MM (2007) A method to detect and quantify long chain faty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids. In: 11th IWA world congress on anaerobic digestion, Brisbane, Australia, 23–27 September 2007

    Google Scholar 

  • Oh ST, Martin AD (2010) Long chain fatty acids degradation in anaerobic digester: thermodynamic equilibrium consideration. Process Biochem 45:335–345. doi:10.1016/j.procbio.2009.10.006

    Article  CAS  Google Scholar 

  • Palatsi J, Illa J, Prenafeta-Boldú FX, Laureni M, Fernandez B, Angelidaki I, Flotats X (2010) Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modelling. Bioresour Technol 101:2243–2251. doi:10.1016/j.biortech.2009.11.069

    Article  CAS  PubMed  Google Scholar 

  • Palatsi J, Laureni M, Andrés MV, Flotats X, Nielsen HB, Angelidaki I (2009) Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol 100:4588–4596. doi:10.1016/j.biortech.2009.04.046

    Article  CAS  PubMed  Google Scholar 

  • Pastor L, Ruiz L, Pascual A, Ruiz B (2013) Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production. Appl Energy 107:438–445. doi:10.1016/j.apenergy.2013.02.055

    Article  CAS  Google Scholar 

  • Pereira MA, Pires OC, Mota M, Alves MM (2005a) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnol Bioeng 92:15–23. doi:10.1016/j.watres.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  • Pereira MA, Mota M, Alves MM (2005b) The important role of mass transfer limitations caused by Long Chain Fatty Acid accumulation onto the anaerobic sludge Proceedings do 10° Congresso Mundial de Digestão Anaeróbia 92:15–23. doi: 10.1002/bit.20548

  • Qian C (2013) Effect of long-chain fatty acids on anaerobic digestion. Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. doi:10.3390/ijerph10094390

  • Salimon J, Omar TA, and Salih N (2014) Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography. Sci World J 2014:Article ID 906407, 10 pages. doi.org/10.1155/2014/906407

  • Salvador AF, Bize A, Alves MM, Bouchez T and Sousa DZ (2013) Metaproteomics of anaerobic microbial communities degrading long-chain fatty acids. In: 13th world congress on anaerobic digestion. Santiago de Compostela, Spain, June 25–28, 4–1, 2013

    Google Scholar 

  • Shin HS, Kim SH, Lee CY, Nam SY (2003) Inhibitory effects of long-chain fatty acids on VFA degradation and β-oxidation. Water Sci Technol 47(10):139–146

    Google Scholar 

  • Silvestre G, Illa J, Fernández B, Bonmatí A (2014) Thermophilic anaerobic co-digestion of sewage sludge with grease waste: effect of long chain fatty acids in the methane yield and its dewatering properties. Appl Energy 117:87–94. doi:10.1016/j.apenergy.2013.11.075

    Article  CAS  Google Scholar 

  • Sousa DZ, Alves JI, Alves MM, Smidt H, Stams AJM (2009) Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA). Environ Microbiol 11:68–80. doi:10.1111/j.1462-2920.2008.01740.x

    Article  CAS  PubMed  Google Scholar 

  • Sousa DZ, Balk M, Alves M, Schink B, McInerney MJ, Smidt H, Plugge CM, Stams AJM (2010) Degradation of long-chain fatty acids by sulfate-reducing and methanogenic communities. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 963–980. doi:10.1007/978-3-540-77587-4_69

    Chapter  Google Scholar 

  • Sousa DZ, Pereira MA, Stams AJM, Alves MM, Smidt H (2007a) Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol 73(4):1054–1064. doi:10.1128/AEM.01723-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sousa DZ, Salvador AF, Ramos J, Guedes AP, Barbosa S, Stams AJM, Alves MM, Pereira MA (2013) Effect of long-chain fatty acids (LCFA) on the prevalence and viability of hydrogenotrophic methanogens Conference object. doi:10.1111/j.1758-2229.2011.00249.x

  • Sousa DZ, Smidt H, Alves MM, Stams AJM (2007b) Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57:609–615. doi:10.1099/ijs.0.64734-0

    Article  CAS  PubMed  Google Scholar 

  • Suto P, Gray DMD, Larsen E, Hake J (2006) Innovative anaerobic digestion investigation of fats, oils and grease. In: Proceedings of water environment federation, pp 858–879 (22). doi:10.2175/193864706783796853

  • Tarola AM, Girelli AM, Lorusso S (2012) High performance liquid chromatography determination of fatty acids in drying oils following lipase action. J Chromatogr Sci 50:294–300. doi:10.1093/chromsci/bms005

    Article  CAS  PubMed  Google Scholar 

  • York RV, Magner JA, Chung G (2008) Increasing CHP productivity while reducing biosolids volume and climate change gases. Proc Water Environ Feder 12:6639–6651. doi:10.2175/193864708790893675

    Google Scholar 

  • Zeitz JO, Bucher S, Zhou X, Meile L, Kreuzer M, Soliva CR (2013) Inhibitory effects of saturated fatty acids on methane production by methanogenic Archaea. J Anim Feed Sci 22(1):44–49

    Google Scholar 

  • Zhu K (2013) Effects of long chain fatty acids on completely mixed anaerobic digesters treating municipal sewage sludge. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Zonta Z, Alves MM, Flotats X, Palatsi J (2013) Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process. Water Res 47(3):1369–1380. doi:10.1016/j.watres.2012.12.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the director of CSIR, National Environmental Engineering Research Institute, for providing necessary facilities for this work. Funds from CSIR network project ESC0108 also are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman A. Khardenavis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sharma, P., Khardenavis, A.A., Purohit, H.J. (2015). Metabolism of Long-Chain Fatty Acids (LCFAs) in Methanogenesis. In: Kalia, V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2598-0_16

Download citation

Publish with us

Policies and ethics