Skip to main content

Chitosan Hydrogels for Regenerative Engineering

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Research in the field of hydrogels has been actively growing for the past couple of decades. Hydrogels are crosslinked polymers with high water content. They can be prepared from natural, synthetic, and composite polymers using different chemical and physical crosslinking methods. Hydrogels have been widely explored for the delivery of bioactive molecules, drugs, and for other therapeutic applications. Chitosan-based hydrogels have unique advantages owing to their biocompatibility, biodegradability, antimicrobial activity, mucoadhesivity, and low toxicity. This chapter reviews the different methods used for preparing chitosan-based hydrogels and their applications as cell, protein, and drug delivery vehicles to support tissue regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  2. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  3. Narayanan D, Jayakumar R, Chennazhi KP (2014) Versatile carboxymethyl chitin and chitosan nanomaterials: a review. WIREs Nanomed Nanobiotechnol 6:574–598

    Article  CAS  Google Scholar 

  4. Tokura S, Itoyama K, Nishi N, Nishimura S, Saiki I, Azuma I (1994) Selective sulfation of chitin derivatives for biomedical functions. J Macromol Sci A 31:1701–1718

    Article  Google Scholar 

  5. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  6. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  7. Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  8. Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416

    Article  CAS  Google Scholar 

  9. Cartier N, Domard A, Chanzy H (1990) Single crystals of chitosan. Int J Biol Macromol 12:289–294

    Article  CAS  Google Scholar 

  10. Rinaudo M, Milas M, Dung PL (1993) Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int J Biol Macromol 15(5):281–285

    Article  CAS  Google Scholar 

  11. Roberts GA, Domszy JG (1982) Determination of the viscometric constants for chitosan. Int J Biol Macromol 4:374–377

    Article  CAS  Google Scholar 

  12. Mourya VK, Inamdar NN (2008) Chitosan—modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    Article  CAS  Google Scholar 

  13. Mourya VK, Inamdar NN, Tiwari Ashutosh (2010) Carboxymethyl chitosan and its applications. Adv Mat Lett 1(1):11–33

    Article  CAS  Google Scholar 

  14. Upadhyay L, Singh J, Agarwal V, Tewari RP (2013) Biomedical applications of carboxymethyl chitosans. Carbohyd Polym 91:452–466

    Article  CAS  Google Scholar 

  15. Pereira P, Pedrosa SS, Correia A, Lima CF, Olmedo MP, Gonzalez-Fernandez A, Vilanova M, Gama FM (2015) Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicol In Vitro 29:638–646

    Article  CAS  Google Scholar 

  16. Trapani A, Gioia SD, Ditaranto N, Cioffi N, Goycoolea FM, Carbone A, Garcia-Fuentes M, Conese M, Alonso MJ (2013) Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. Int J Pharm 447:115–123

    Article  CAS  Google Scholar 

  17. Jiang G, Sun J, Ding F (2014) PEG-g-chitosan thermosensitive hydrogel for implant drug delivery: cytotoxicity, in vivo degradation and drug release. J Biomat Sci-Polym E 25(3):241–256

    Article  CAS  Google Scholar 

  18. Ding K, Wang Y, Wang H, Yuan L, Tan M, Shi X, Lyu Z, Liu Y, Chen H (2014) 6-O-sulfated chitosan promoting the neural differentiation of mouse embryonic stem cells. ACS Appl. Mater. Interfaces 6(22):20043–20050

    Article  CAS  Google Scholar 

  19. Vikhoreva G, Bannikova G, Stolbushkina P, Panov A, Drozd N, Makarov V, Varlamov V, Gal’braikh L (2005) Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohyd Polym 62:327–332

    Article  CAS  Google Scholar 

  20. Heras A, Rodriguez NM, Ramos VM, Agullo E (2001) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohyd Polym 44:1–8

    Article  CAS  Google Scholar 

  21. Zhu D, Yao K, Bo J, Zhang H, Liu L, Dong X, Song L, Leng X (2010) Hydrophilic/lipophilic N-methylene phosphonic chitosan as a promising non-viral vector for gene delivery. J Mater Sci-Mater M 21(1):223–229

    Article  CAS  Google Scholar 

  22. Sajomsang W, Nuchuchua O, Saesoo S, Gonil P, Chaleawlert-umpon S, Pimpha N, Sramala I, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR (2013) A comparison of spacer on water-soluble cyclodextrin grafted chitosan inclusion complex as carrier of eugenol to mucosae. Carbohyd Polym 92:321–327

    Article  CAS  Google Scholar 

  23. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliver Rev 58:1379–1408

    Article  CAS  Google Scholar 

  24. Patel A, Mequanint K (2011) Hydrogel biomaterials. In: Fazel-Rezai R (ed) Chapter 14 in Biomedical Engineering—Frontiers and Challenges, pp 275–296

    Google Scholar 

  25. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  Google Scholar 

  26. Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2:5319–5338

    Article  CAS  Google Scholar 

  27. Ottenbrite RM, Park K, Okano T (eds) (2010) Biomedical applications of hydrogels handbook, p 204

    Google Scholar 

  28. Tan H, Marra KG (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767

    Article  CAS  Google Scholar 

  29. Miguel SP, Ribeiro MP, Branca H, Coutinho P, Correia IJ (2014) Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohyd Polym 111:366–373

    Article  CAS  Google Scholar 

  30. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    Article  CAS  Google Scholar 

  31. Gibas I, Janik H (2010) Review: synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4:297–304

    Google Scholar 

  32. Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52

    Article  CAS  Google Scholar 

  33. Aziz MA, Cabral JD, Brooks HJL, Moratti SC, Hanton LR (2012) Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob Agents Ch 56(1):280–287

    Article  CAS  Google Scholar 

  34. He P, Davis SS, Illum L (1998) In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm 166:75–88

    Article  CAS  Google Scholar 

  35. Lee YH, Chang JJ, Yang MC, Chien CT, Lai WF (2012) Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohyd Polym 88:809–819

    Article  CAS  Google Scholar 

  36. Han T, Nwe N, Furuike T, Tokura S, Tamura H (2012) Methods of N-acetylated chitosan scaffolds and its in vitro biodegradation by lysozyme. J. Biomed Sci Eng 5:15–23

    Article  CAS  Google Scholar 

  37. Verheul RJ, Amidi M, van Steenbergen MJ, van Riet E, Jiskoot W, Hennink WE (2009) Influence of the degree of acetylation on the enzymatic degradation and in vitro biological properties of trimethylated chitosans. Biomaterials 30(18):3129–3135

    Article  CAS  Google Scholar 

  38. Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technol 99:2806–2814

    Article  CAS  Google Scholar 

  39. Kim SK (ed) (2013) Chitin and chitosan derivatives: advances in drug discovery and developments, p 246

    Google Scholar 

  40. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliver Rev 62:83–99

    Article  CAS  Google Scholar 

  41. Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68:19–25

    Article  CAS  Google Scholar 

  42. Sheridan WS, Grant OB, Duffy GP, Murphy BP (2014) The application of a thermoresponsive chitosan/β-GP gel to enhance cell repopulation of decellularized vascular scaffolds. J Biomed Mater Res B 102B:1700–1710

    Article  CAS  Google Scholar 

  43. Lu WN, Lu SH, Wang HB, Li DX, Duan CM, Liu ZQ, Hao T, He WJ, Xu B, Fu Q, Song YC, Xie XH, Wang CY (2009) Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Pt A 15(6):1437–1447

    Article  CAS  Google Scholar 

  44. Niranjan R, Koushik C, Saravanan S, Moorthi A, Vairamani M, Selvamurugan N (2013) A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 54(2013):24–29

    Article  CAS  Google Scholar 

  45. Nair LS, Starnes T, Ko JWK, Laurencin CT (2007) Development of injectable thermogelling chitosan-inorganic phosphate solutions for biomedical applications. Biomacromolecules 8:3779–3785

    Article  CAS  Google Scholar 

  46. Liu X, Chen Y, Huang Q, He W, Feng Q, Yu B (2014) A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate. Carbohyd Polym 110:62–69

    Article  CAS  Google Scholar 

  47. Chenite A, Buschmann M, Wang D, Chaut C, Kandani N (2001) Rheological characterization of thermogelling chitosan/glycerol-phosphate solutions. Carbohyd Polym 46(1):39–47

    Article  CAS  Google Scholar 

  48. Han H, Nam D, Seo D, Kim T, Shin B, Choi H (2004) Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature. Macromol Res 12(5):507–511

    Article  CAS  Google Scholar 

  49. Kafedjiiski K, Krauland AH, Hoffer MH, Bernkop-Schnuech A (2005) Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials 26(7):819–826

    Article  CAS  Google Scholar 

  50. Khodaverdi E, Tafaghodi M, Ganji F, Abnoos K, Naghizadeh H (2012) In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech 13(2):460–466

    Article  CAS  Google Scholar 

  51. Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliver Rev 64:154–162

    Article  Google Scholar 

  52. Kim JH, Lee SB, Kim SJ, Lee YM (2002) Rapid temperature/pH response of porous alginate-g-poly(Nisopropylacrylamide) hydrogels. Polymer 43:7549–7558

    Article  CAS  Google Scholar 

  53. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–339

    Article  CAS  Google Scholar 

  54. Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6:1026–1039

    Article  CAS  Google Scholar 

  55. Mao J, Kondu S, Ji HF, McShane MJ (2006) Study of the near-neutral pH-sensitivity of chitosan/gelatin hydrogels by turbidimetry and microcantilever deflection. Biotechnol Bioeng 95(3):333–341

    Article  CAS  Google Scholar 

  56. Bostan MS, Senol M, Cig T, Peker I, Goren AC, Ozturk T, Eroglu MS (2003) Controlled release of 5-aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels. Int J Biol Macromol 52:177–183

    Article  CAS  Google Scholar 

  57. Chiu YL, Chen SC, Su CJ, Hsiao CW, Chen YM, Chen HL, Sung HW (2009) pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 30:4877–4888

    Article  CAS  Google Scholar 

  58. Li QL, Chen ZQ, Darvell BW, Liu LK, Jiang HB, Zen Q, Peng Q, Ou GM (2007) Chitosan-phosphorylated chitosan polyelectrolyte complex hydrogel as an osteoblast carrier. J Biomed Mater Res 82(2):481–486

    Article  CAS  Google Scholar 

  59. Lankalapalli S, Kolapalli VRM (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71(5):481–487

    Article  CAS  Google Scholar 

  60. Coutinho DF, Sant S, Shakiba M, Wang B, Gomes ME, Neves NM, Reis RL, Khademhosseini A (2012) Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. J Mater Chem 22(33):17262–17271

    Article  CAS  Google Scholar 

  61. Ji DY, Kuo TF, Wu HD, Yang JC, Lee SY (2012) A novel injectable chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue augmentation. Carbohyd Polym 89:1123–1130

    Article  CAS  Google Scholar 

  62. Chang HH, Wang YL, Chiang YC, Chen YL, Chuang YH, Tsai SJ, Heish KH, Lin FH, Lin CP (2014) A novel chitosan-γPGA polyelectrolyte complex hydrogel promotes early new bone formation in the alveolar socket following tooth extraction. PLoS ONE 9(3):e92362

    Article  CAS  Google Scholar 

  63. Azab AK, Orkin B, Doviner V, Nissan A, Klein M, Srebnik M, Rubinstein A (2006) Crosslinked chitosan implants as potential degradable devices for brachytherapy: in vitro and in vivo analysis. J Control Release 111:281–289

    Google Scholar 

  64. de Abreu FR, Campana-Filho SP (2009) Characteristics and properties of carboxymethylchitosan. Carbohyd Polym 75:214–221

    Article  CAS  Google Scholar 

  65. Vaghani SS, Patel MM, Satish CS (2012) Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohyd Res 347:76–82

    Article  CAS  Google Scholar 

  66. Lin Y, Chen Q, Luo H (2007) Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potential pH-sensitive hydrogel for drug delivery. Carbohyd Res 342:87–95

    Article  CAS  Google Scholar 

  67. Gomez-Mascaraque LG, Mendez JA, Fernandez-Gutierrez M, Vazquez B, Roman JS (2014) Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose-chitosan. Acta Biomater 10:798–811

    Article  CAS  Google Scholar 

  68. Ranjha NM, Ayub G, Naseem S (2010) Ansari MT (2010) Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci-Mater M 21:2805–2816

    Article  CAS  Google Scholar 

  69. Wang L, Stegemann JP (2011) Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater 7:2410–2417

    Article  CAS  Google Scholar 

  70. Silva SS, Motta A, Rodrigues MT, Pinheiro AFM, Gomes ME, Mano JF, Reis RL, Migliaresi C (2008) Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 9:2764–2774

    Article  CAS  Google Scholar 

  71. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624

    Article  CAS  Google Scholar 

  72. Giri TK, Thakur A, Alexander A, Ajazuddin Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharmaceutica Sinica B 2(5):439–449

    Article  CAS  Google Scholar 

  73. Fiejdasz S, Szczubialka K, Lewandowska-Lancucka J, Osyczka AM, Nowakowska M (2013) Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds. Biomed Mater 8:035013

    Article  CAS  Google Scholar 

  74. Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24:3437–3444

    Article  CAS  Google Scholar 

  75. Ishihara M, Obara K, Ishizuka T, Fujita M, Sato M, Masuoka K, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J Biomed Mater Res Pt A 64A(3):551–559

    Article  CAS  Google Scholar 

  76. Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T (2001) Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications. Surgery 130(5):844–850

    Article  CAS  Google Scholar 

  77. Hayashi T, Matsuyama T, Hanada K, Nakanishi K, Uenoyama M, Fujita M, Ishihara M, Kikuchi M, Ikeda T, Tajiri H (2004) Usefulness of photocrosslinkable chitosan for endoscopic cancer treatment in alimentary tract. J Biomed Mater Res B 71(2):367–372

    Article  CAS  Google Scholar 

  78. Zhou Y, Ma G, Shi S, Yang D, Nie J (2011) Photopolymerized water-soluble chitosan-based hydrogel as potential use in tissue engineering. Int J Biol Macromol 48:408–413

    Article  CAS  Google Scholar 

  79. Tsuda Y, Hattori H, Tanaka Y, Ishihara M, Kishimoto S, Amako M, Arino H, Nemoto K (2013) Ultraviolet light-irradiated photocrosslinkable chitosan hydrogel to prevent bone formation in both rat skull and fibula bone defects. J Tissue Eng Regen M 7:720–728

    Article  CAS  Google Scholar 

  80. Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M (2000) Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 49(2):289–295

    Article  CAS  Google Scholar 

  81. Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M (2014) Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J Tissue Eng Regen Med (in press)

    Google Scholar 

  82. Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 33:1281–1290

    Article  CAS  Google Scholar 

  83. Sakai S, Yamada Y, Zenke T, Kawakami K (2009) Novel chitosan derivative soluble at neutral pH and in-situ gellable via peroxidase-catalyzed enzymatic reaction. J Mater Chem 19:230–235

    Article  CAS  Google Scholar 

  84. da Silva MA, Bode F, Drake AF, Goldoni S, Stevens MM, Dreiss CA (2014) Enzymatically cross-linked gelatin/chitosan hydrogels: tuning gel properties and cellular response. Macromol Biosci 14:817–830

    Article  CAS  Google Scholar 

  85. Kang GD, Lee KH, Ki CS, Nahm JH, Park YH (2004) Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromol Res 12(5):534–539

    Article  CAS  Google Scholar 

  86. Jin R, Teixeira LSM, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551

    Article  CAS  Google Scholar 

  87. Brittain SB (2013) Development and characterization of a bioactive injectable chitosan hydrogel for bone repair. University of Connecticut, Master’s Thesis

    Google Scholar 

  88. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192

    Article  CAS  Google Scholar 

  89. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 57(1):1–8

    Article  CAS  Google Scholar 

  90. Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio L, Calabro D, Avallone B, Balsamo G (1994) Chitosan-mediated stimulation of macrophage function. Biomaterials 15(15):1215–1220

    Article  CAS  Google Scholar 

  91. Chakavala SR, Patel NG, Pate NV, Thakkar VT, Patel KV, Gandhi TR (2012) Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns. J Pharm Bioallied Sci 4(Supplement 1):S54–S56

    Article  CAS  Google Scholar 

  92. Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Edition) 3:923–944

    Google Scholar 

  93. Amini AT, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  Google Scholar 

  94. Li J, Yang B, Qian Y, Wang Q, Han R, Hao T, Shu Y, Zhang Y, Yao F, Wang C (2014) Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J Biomed Mater Res B (in press)

    Google Scholar 

  95. Beskardes IG, Demirtas TT, Durukan MD, Gumusderelioglu M (2012) Microwave-assisted fabrication of chitosan–hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med (in press)

    Google Scholar 

  96. Dessi M, Borzacchiello A, Mohamed THA, Abdel-Fattah WI, Ambrosio L (2013) Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res A 101(10):2984–2993

    Article  CAS  Google Scholar 

  97. Dimitriou R, Jones E, McGonagle D, Peter V, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66

    Article  Google Scholar 

  98. Vo TN, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliver Rev 64(12):1292–1309

    Article  CAS  Google Scholar 

  99. Dong L, Huang Z, Cai X, Xiang J, Zhu YA, Wang R, Chen J, Zhang J (2011) Localized delivery of antisense oligonucleotides by cationic hydrogel suppresses TNF-α expression and endotoxin-induced osteolysis. Pharm Res 28:1349–1356

    Article  CAS  Google Scholar 

  100. Kim S, Bedigrew K, Guda T, Maloney WJ, Park S, Wenke JC, Yang YP (2014) Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomater 10(12):5021–5033

    Article  CAS  Google Scholar 

  101. Kim S, Kang Y, Mercado-Pagan AE, Maloney WJ, Yang Y (2014) In vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering. J Biomed Mater Res, Part B 102B:1393–1406

    Article  CAS  Google Scholar 

  102. Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S (2014) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliver Rev pp. 107−122

    Google Scholar 

  103. Ryan JM, Flanigan DC (2013) Emerging technologies: what is the future of cartilage restoration? Hard Tissue 2(2):12

    Google Scholar 

  104. Musumeci G, Castrogiovanni P, Leonardi R, Trovato FM, Szychlinska MA, Di Giunta A, Loreto C, Castorina S (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5(2):80–88

    Article  Google Scholar 

  105. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009) Thermosensitive chitosan-pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965

    Article  CAS  Google Scholar 

  106. Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  CAS  Google Scholar 

  107. Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J (2010) Potential of an injectable chitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int J Pharm 391:115–124

    Article  CAS  Google Scholar 

  108. Marsich E, Borgogna M, Donati I, Mozetic P, Strand BL, Salvador SG, Vittur F, Paoletti S, Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation. J Biomed Mater Res A 84(2):364–376

    Google Scholar 

  109. Zhao P, Deng C, Xu H, Tang X, He H, Lin C, Su J (2014) Fabrication of photo-crosslinked chitosan-gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Bio-Med Mater Eng 24:633–641

    CAS  Google Scholar 

  110. Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J (2007) Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater 3:23–31

    Article  CAS  Google Scholar 

  111. Lam J, Lu S, Kasper FK, Mikos AG (2014) Strategies for controlled delivery of biologics for cartilage repair, Adv Drug Deliv Rev pp. 123−134

    Google Scholar 

  112. Faikrua A, Wittaya-areekul S, Oonkhanond B, Viyoch J (2013) In vivo chondrocyte and transforming growth factor-β1 delivery using the thermosensitive chitosan/starch/β-glycerol phosphate hydrogel. J Biomater Appl 28(2):175–186

    Article  CAS  Google Scholar 

  113. Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121

    Article  CAS  Google Scholar 

  114. Sukarto A, Yu C, Flynn LE, Amsden BG (2012) Co-delivery of adipose-derived stem cells and growth factor-loaded microspheres in RGD-grafted N-methacrylate glycol chitosan gels for focal chondral repair. Biomacromolecules 13:2490–2502

    Article  CAS  Google Scholar 

  115. Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108–118

    Article  CAS  Google Scholar 

  116. Pfister LA, Papaloizos M, Merkle HP, Gander B (2007) Hydrogel nerve conduits produced from alginate/chitosan complexes. J Biomed Mater Res A 80(4):932–937

    Article  CAS  Google Scholar 

  117. Zuidema JM, Pap MM, Jaroch DB, Morrison FA, Gilbert RJ (2011) Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomater 7:1634–1643

    Article  CAS  Google Scholar 

  118. Kwon JS, Kim GH, Kim DY, Yoon SM, Seo HW, Kim JH, Min BH, Kim MS (2012) Chitosan-based hydrogels to induce neuronal differentiation of rat muscle-derived stem cells. Int J Biol Macromol 51:974–979

    Article  CAS  Google Scholar 

  119. Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Horne MK, Forsythe JS (2007) Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 28:441–449

    Article  CAS  Google Scholar 

  120. Valmikinathan CM, Mukhatyar VJ, Jain A, Karumbaiah L, Dasari M, Bellamkonda RV (2012) Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter 8:1964–1976

    Article  CAS  Google Scholar 

  121. Rickett TA, Amoozgar Z, Tuchek CA, Park J, Yeo Y, Shi R (2011) Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules 12:57–65

    Article  CAS  Google Scholar 

  122. McMahon SS, Nikolskaya N, Choileain SN, Hennessy N, O’Brien T, Strappe PM, Gorelov A, Rochev Y (2011) 0 Thermosensitive hydrogel for prolonged delivery of lentiviral vector expressing neurotrophin-3 in vitro. J Gene Med 13:591–601

    Article  CAS  Google Scholar 

  123. Leipzig ND, Wylie RG, Kim H, Shoichet MS (2011) Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32:57–64

    Article  CAS  Google Scholar 

  124. Li H, Koenig AM, Sloan P, Leipzig ND (2014) In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35:9049–9057

    Article  CAS  Google Scholar 

  125. Grolik M, Szczubialka K, Wowra B, Dobrowolski D, Orzechowska-Wylegala B, Wylegala E, Nowakowska M (2012) Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering. J Mater Sci-Mater Med 23:1991–2000

    Article  CAS  Google Scholar 

  126. Ozcelik B, Brown KD, Blencowe A, Daniell M, Stevens GW, Qiao GG (2013) Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater 9:6594–6605

    Article  CAS  Google Scholar 

  127. Liang Y, Liu W, Han B, Yang C, Ma Q, Song F, Bi Q (2011) An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloid Surface B 82:1–7

    Article  CAS  Google Scholar 

  128. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M (2008) PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29:3960–3972

    Article  CAS  Google Scholar 

  129. Chien Y, Liao YW, Liu DM, Lin HL, Chen SJ, Chen HL, Peng CH, Liang CM, Mou CY, Chiou SH (2012) Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel. Biomaterials 33:8003–8016

    Article  CAS  Google Scholar 

  130. Alonso MJ, Sanchez A (2003) The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 55(11):1451–1463

    Article  CAS  Google Scholar 

  131. Hosny KM (2009) Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS PharmSciTech 10(4):1336–1342

    Article  CAS  Google Scholar 

  132. Bitar KN, Raghavan S (2012) Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroent Motil 24(1):7–19

    Article  CAS  Google Scholar 

  133. Bitar KN, Zakhem E (2013) Tissue engineering and regenerative medicine as applied to the gastrointestinal tract. Curr Opin Biotechnol 24(5):909–915

    Article  CAS  Google Scholar 

  134. Rabbani S, Rabbani A, Mohagheghi MA, Mirzadeh H, Amanpour S, Alibakhshi A, Anvari MS, Ghazizadeh Y (2010) Novel approach for repairing of intestinal fistula using chitosan hydrogel. J Biomater Appl 24(6):545–553

    Article  CAS  Google Scholar 

  135. Falabella CA, Melendez MM, Weng L, Chen W (2010) Novel macromolecular crosslinking hydrogel to reduce intra-abdominal adhesions. J Surg Res 159:772–778

    Article  CAS  Google Scholar 

  136. Lauder CI, Strickland A, Maddern GJ (2012) Use of a modified chitosan-dextran gel to prevent peritoneal adhesions in a porcine hemicolectomy model. J Surg Res 176:448–454

    Article  CAS  Google Scholar 

  137. Xu J, Soliman GM, Barralet J, Cerruti M (2012) Mollusk glue inspired mucoadhesives for biomedical applications. Langmuir 28:14010–14017

    Article  CAS  Google Scholar 

  138. Chavda H, Modhia I, Mehta A, Patel R, Patel C (2013) Development of bioadhesive chitosan superporous hydrogel composite particles based intestinal drug delivery system. BioMed Res Int 2013:Article ID 563651

    Google Scholar 

  139. Kumar Singh Yadav H, Shivakumar HG (2012) In vitro and in vivo evaluation of pH-sensitive hydrogels of carboxymethyl chitosan for intestinal delivery of theophylline. ISRN Pharm. 2012:Article ID 763127

    Google Scholar 

  140. Maeng JH, Bang BW, Lee E, Kim J, Kim HG, Lee DH, Yang SG (2014) Endoscopic application of EGF-chitosan hydrogel for precipitated healing of GI peptic ulcers and mucosectomy-induced ulcers. J Mater Sci-Mater M 25:573–582

    Article  CAS  Google Scholar 

  141. Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, Vunjak-Novakovic G, Kaplan DL (2010) Adipose tissue engineering for soft tissue regeneration. Tissue Eng Pt B-Rev 16(4):413–426

    Article  Google Scholar 

  142. Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE (2014) Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials 35:1914–1923

    Article  CAS  Google Scholar 

  143. Wu X, Black L, Santacana-Laffitte G, Patrick CW (2007) Preparation and assessment of glutaraldehyde crosslinked collagen-chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res A 81(1):59–65

    Article  CAS  Google Scholar 

  144. Zotarelli Filho IJ, Frascino LF, Greco OT, de Araujo JD, Bilaqui A, Kassis EN, Ardito RV, Bonilla-Rodriguez GO (2013) Chitosan-collagen scaffolds can regulate the biological activities of adipose mesenchymal stem cells for tissue engineering. J Regen Med Tissue Eng 2:12

    Article  CAS  Google Scholar 

  145. Jaikumar D, Sajesh KM, Soumya S, Nimal TR, Chennazhi KP, Nair SV, Jayakumar R (2014) Injectable alginate-O-carboxymethyl chitosan/nano fibrin compositehydrogels for adipose tissue engineering. Int J Biol Macromol 74:318–326

    Article  CAS  Google Scholar 

  146. Tan H, Rubin JP, Marra KG (2010) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis 6(3):173–180

    Article  Google Scholar 

  147. Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA (2013) Liver tissue engineering and cell sources: issues and challenges. Liver Int 33:666–676

    Article  CAS  Google Scholar 

  148. Sj Seo, Choi YJ, Akaike T, Higuchi A, Cho CS (2006) Alginate/galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. Tissue Eng 12(1):33–44

    Article  Google Scholar 

  149. Horio T, Ishihara M, Fujita M, Kishimoto S, Kanatani Y, Ishizuka T, Nogami Y, Nakamura S, Tanaka Y, Morimoto Y, Maehara T (2010) Effect of photocrosslinkable chitosan hydrogel and its sponges to stop bleeding in a rat liver injury model. Artif Organs 34:342–347

    Article  CAS  Google Scholar 

  150. Zhang D, Xie D, Wei X, Zhang D, Chen M, Yu X, Liang P (2014) Microwave ablation of the liver abutting the stomach: insulating effect of a chitosan-based thermosensitive hydrogel. Int J Hyperther 3(2):126–133

    Article  CAS  Google Scholar 

  151. Jiang HL, Kim YK, Lee SM, Park MR, Kim EM, Jin YM, Arote R, Jeong HJ, Song SC, Cho MH, Cho CS (2010) Galactosylated chitosan-g-PEI/DNA complexes-loaded poly(organophosphazene) hydrogel as a hepatocyte targeting gene delivery system. Arch Pharm Res 33(4):551–556

    Article  CAS  Google Scholar 

  152. Urban JPG, Roberts S, Ralphs JR (2000) The nucleus of the intervertebral disc from development to degeneration. Am Zool 40(1):53–61

    Google Scholar 

  153. Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA (2007) Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol Histopathol 22:1033–1041

    CAS  Google Scholar 

  154. Sasson A, Patchornik S, Eliasy R, Robinson D, Haj-Ali R (2012) Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling. J Mech Behav Biomed 8:143–153

    Article  CAS  Google Scholar 

  155. Mwale F, Iordanova M, Demers CN, Steffen T, Roughley P, Antoniou J (2005) Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 11(1–2):130–140

    Article  CAS  Google Scholar 

  156. Smith LJ, Gorth DJ, Showalter BL, Chiaro JA, Beattie EE, Elliott DM, Mauck RL, Chen W, Malhotra NR (2014) In vitro characterization of a stem-cell-seeded triple-interpenetrating-network hydrogel for functional regeneration of the nucleus pulposus. Tissue Eng Pt A 20(13–14):1841–1849

    Google Scholar 

  157. Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA (2008) Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials 29(1):85–93

    Article  CAS  Google Scholar 

  158. Cheng YH, Yang SH, Lin FH (2011) Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials 32:6953–6961

    Article  CAS  Google Scholar 

  159. Wang H, Shi J, Wang Y, Yin Y, Wang L, Liu J, Liu Z, Duan C, Zhu P, Wang C (2014) Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials 35:3986–3998

    Article  CAS  Google Scholar 

  160. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M (2012) A peptide-modified chitosan–collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 8:1022–1036

    Article  CAS  Google Scholar 

  161. Chiu LL, Janic K, Radisic M (2012) Engineering of oriented myocardium on threedimensional micropatterned collagen-chitosan hydrogel. Int J Artif Organs 35(4):237–250

    Article  CAS  Google Scholar 

  162. Pok S, Myers JD, Madihally SV, Jacot JG (2013) A multi-layered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater 9(3):5630–5642

    Article  CAS  Google Scholar 

  163. Beohar N, Rapp J, Pandya S, Losordo DW (2010) Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol 56(16):1287–1297

    Article  Google Scholar 

  164. Fujita M, Ishihara M, Morimoto Y, Simizu M, Saito Y, Yura H, Matsui T, Takase B, Hattori H, Kanatani Y, Kikuchi M, Maehara T (2005) Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res 126:27–33

    Article  CAS  Google Scholar 

  165. Chiu LL, Reis LA, Radisic M (2012) Controlled delivery of thymosin β4 for tissue engineering and cardiac regenerative medicine. Ann NY Acad Sci 1269:16–25

    Article  CAS  Google Scholar 

  166. Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng Pt B-Rev 14(1):105–118

    Article  CAS  Google Scholar 

  167. Wijekoon A, Fountas-Davis N, Leipzig ND (2013) Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater 9:5653–5664

    Article  CAS  Google Scholar 

  168. Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28:3478–3488

    Article  CAS  Google Scholar 

  169. Kiyozumi T, Kanatani Y, Ishihara M, Saitoh D, Shimizu J, Yura H, Suzuki S, Okada Y, Kikuchi M (2007) The effect of chitosan hydrogel containing DMEM/F12 medium on full-thickness skin defects after deep dermal burn. Burns 33(5):642–648

    Article  Google Scholar 

  170. Cui F, Li G, Huang J, Zhang J, Lu M, Lu W, Huan J, Huang Q (2011) Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant staphylococcus aureus and promotion wound healing properties. Drug Deliv 18(3):173–180

    Article  CAS  Google Scholar 

  171. Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine (in press)

    Google Scholar 

  172. Fujita M, Ishihara M, Shimizu M, Obara K, Nakamura S, Kanatani Y, Morimoto Y, Takase B, Matsui T, Kikuchi M, Maehara T (2007) Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/ non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen 15(1):58–65

    Article  Google Scholar 

  173. Choi JS, Yoo HS (2013) Chitosan/pluronic hydrogel containing bFGF/heparin for encapsulation of human dermal fibroblasts. J Biomat Sci-Polym E 24(2):210–223

    CAS  Google Scholar 

  174. Pulat M, Kahraman AS, Tan N, Gumusderelioglu M (2013) Sequential antibiotic and growth factor releasing chitosan-PAAm semi-IPN hydrogel as a novel wound dressing. J Biomat Sci-Polym E 24(7):807–819

    Article  CAS  Google Scholar 

  175. Yilgor C, Huri PY, Huri G (2012) Tissue engineering strategies in ligament regeneration. Stem Cells Int 2012:Article ID 374676

    Google Scholar 

  176. Hayami JW, Surrao DC, Waldman SD, Amsden BG (2010) Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 92(4):1407–1420

    Google Scholar 

  177. Deepthi S, Jeevitha K, Sundaram MN, Chennazhi KP, Jayakumar R (2015) Chitosan-hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem Eng J 260:478–485

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi S. Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Padmanabhan, A., Nair, L.S. (2016). Chitosan Hydrogels for Regenerative Engineering. In: Dutta, P. (eds) Chitin and Chitosan for Regenerative Medicine. Springer Series on Polymer and Composite Materials. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2511-9_1

Download citation

Publish with us

Policies and ethics