Skip to main content

Metagenomic Approaches in Understanding the Rumen Function and Establishing the Rumen Microbial Diversity

  • Chapter
Climate Change Impact on Livestock: Adaptation and Mitigation

Abstract

Livestock production in developing countries is subsidiary to plant agriculture. In tropical countries, ruminants are fed on lignocellulosic by-products like cereal straws, tree foliages, and cakes of oilseeds. The rumen harbors complex microbial communities which play a critical role in efficient utilization of such complex plant materials. The metagenome of the rumen is considered a determining factor for the efficiency of the particular digestive metabolism of ruminants as well as the accompanying environmental problems. Gene signature and biological fingerprinting of microorganisms present in ruminants is an important area of scientific research. Recent advances in the ruminant gut microbiology and genomics now offer new opportunities to conduct a more holistic examination of the structure and function of rumen ecology. The importance of rumen microbial signature and diversity of microorganisms in the ruminant forestomach has gained increasing attention in response to recent trends in global livestock production. Applied metagenomics has the potential for providing insight into the functional dynamics of the ruminomics database and will help to achieve a major goal of rumen ecosystem; microbial communities function and interact among these microbes as well as with the host. In this book chapter, we highlight recent studies of the buffalo rumen microbiome in rumen ecology, nutrition, animal efficiency, and microbial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baquero F (2012) Metagenomic epidemiology: a public health need for the control of resistance. Clin Microbiol Infect 18:67–73

    Article  CAS  Google Scholar 

  • Bera-Maillet C, Devillard E, Cezette M, Jouany JP, Forano E (2005) Xylanases and carboxymethylcellulases of the rumen protozoa Polyplastron multivesiculatum, Eudiplodinium maggii and Entodinium sp. FEMS Microbiol Lett 244:149–156

    Article  CAS  Google Scholar 

  • Bhupender SJG, Islam NM, Santanu D, Leif AK (2010) Growth, cell division and sporulation in mycobacteria. Antonie Van Leeuwenhoek 98:165–177

    Article  Google Scholar 

  • Brady R, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes. Chem Biol 5:245–249

    Article  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci 106:1948–1953

    Article  CAS  Google Scholar 

  • Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595

    Article  CAS  Google Scholar 

  • Cano J, Borucki MK (2012) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:1060–1064

    Article  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  • Chhabra A, Manjunath KR, Panigrahy S, Parihar JS (2009) Spatial pattern of methane emissions from Indian livestock. Curr Sci 96:5–10

    Google Scholar 

  • Christel S, Helen S, Wolfgang RW (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962

    Article  Google Scholar 

  • Collignon P, Powers JH, Chiller TM, Aidara-Kane A, Aarestrup AFM (2009) World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin Infect Dis 49:132–141

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  Google Scholar 

  • Dehority BA (1993) Laboratory manual for classification and morphology of ruminal ciliate protozoa. CRC Press, Boca Raton

    Google Scholar 

  • Dehority BA, Orpin CG (1997) Development of, and natural fluctuations in, rumen microbial populations. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Chapman & Hall, London, pp 196–245

    Chapter  Google Scholar 

  • Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256

    Article  CAS  Google Scholar 

  • Edwards JE, Huws SA, Kim EJ, Kingston-Smith AH (2007) Characterization of the dynamics of initial bacterial colonization of nonconserved forage in the bovine rumen. FEMS Microbiol Ecol 62:323–335

    Article  CAS  Google Scholar 

  • FAO, FAOSTAT (2009) Online Statistical Service. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Firkins JL, Yu Z, Morrison M (2007) Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. J Dairy Sci 90:1–16

    Article  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  CAS  Google Scholar 

  • Forsberg CW, Lam K (1977) Use of adenosine 5′-triphosphate as an indicator of the microbiota biomass in rumen contents. Appl Environ Microbiol 33:528–537

    CAS  Google Scholar 

  • Forsberg CW, Cheng KJ, White BA (1997) Polysaccharide degradation in the rumen and large intestine. In: Mackie RI, White BA (eds) Gastrointestinal microbiology. Chapman & Hall, New York, pp 319–379

    Chapter  Google Scholar 

  • Garcia JL, Patel BKC, Olliver B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    Article  CAS  Google Scholar 

  • Gerosa S, Skoet J (2012) Milk availability: trends in production and demand and medium-term outlook. ESA Working paper No. 12-01, February 2012, Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations. www.fao.org/economic/esa

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman CM, Fraser L, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  Google Scholar 

  • Henne A, Daniel R, Schmitz RA, Gottschalk G (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65:3901–3907

    CAS  Google Scholar 

  • Hespell RB, Akin DE, Dehority BA (1997) Bacteria, fungi and protozoa of the rumen. In: Mackie RI, White BA, Isaacson R (eds) Gastrointestinal microbiology, vol 2. Chapman and Hall, New York, pp 59–186

    Chapter  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    Article  CAS  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, London/New York, pp 117–132

    Google Scholar 

  • Huson DH, Richter DC, Mitra S, Auch AF, Schuster SC (2009) Methods for comparative. BMC Bioinform 10(Suppl 1):S12

    Article  Google Scholar 

  • Jami E, Mizrahi I (2012) Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 7(3):e33306

    Article  CAS  Google Scholar 

  • Jarvis GN, Strompl C, Burgess DM, Skillman LC, Moore ER, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332

    Article  CAS  Google Scholar 

  • Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 89:124–135

    CAS  Google Scholar 

  • Karnati SKR, Yu Z, Sylvester JT, Dehority BA, Morrison M, Firkins JL (2003) Technical note: specific PCR amplification of protozoal 18S rDNA sequences from DNA extracted from ruminal samples of cows. J Anim Sci 81:812–815

    CAS  Google Scholar 

  • Klieve AV, Bauchop T (1988) Morphological diversity of ruminal bacteriophages from sheep and cattle. Appl Environ Microbiol 54:1637–1641

    CAS  Google Scholar 

  • Klieve AV, Swain RA (1993) Estimation of ruminal bacteriophage numbers by pulsed field gel electrophoresis and laser densitometry. Appl Environ Microbiol 59:2299–2303

    CAS  Google Scholar 

  • Kobayashi Y, Shinkai T, Koike S (2008) Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion. Folia Microbiol 53:195–200

    Article  CAS  Google Scholar 

  • Kongmun P, Wanapat M, Pakdee P, Navanukraw C (2010) Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest Sci 127:38–44

    Article  Google Scholar 

  • Kudo H, Cheng KJ, Costerton JW (1987) Interactions between Treponema bryantii and bacteria in the in vitro degradation of straw cellulose. Can J Microbiol 33:244–248

    Article  CAS  Google Scholar 

  • Lamendella R, Domingo JW, Ghosh S, Martinson J, Oerther DB (2011) Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol 11:103

    Article  CAS  Google Scholar 

  • Larsen N, Vogensen FK, Van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Abu Al-Soud WMAF, Sorensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085

    Article  Google Scholar 

  • Lourenço M, Ramos-Morales E, Wallace RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4:1008–1023

    Article  Google Scholar 

  • Mackie RI (1997) Gut environment and evolution of mutualistic fermentative digestion. In: Mackie RI, White BA (eds) Gastrointestinal microbiology, vol 1. Chapman & Hall, New York, pp 13–35

    Chapter  Google Scholar 

  • Makkar HPS, Becker K, Abel HJ, Szegletti C (1995) Degradation of condensed tannins by rumen microbes exposed to quebracho tannins (QT) in rumen simulation technique (RUSITEC) and effects of QT on fermentation processes in the RUSITEC. J Sci Food Agric 69:495–500

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, de Winter A, Drake J, Du L, Fierro JM, Forte R, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Hutchison SK, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lee WL, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Reifler M, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Willoughby DA, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 441:7089

    Google Scholar 

  • Miron J, Ben-Ghedalia D, Morrison M (2001) Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84:1294–1309

    Article  CAS  Google Scholar 

  • MOA (2003) 17th livestock census of India. Department of Animal Husbandry and Dairying, Ministry of Agriculture, Government of India

    Google Scholar 

  • Moate PJ, Williams SRO, Grainger C, Hannah MC, Ponnampalam EN, Eckard RJ (2011) Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Anim Feed Sci Technol 166:254–264

    Article  Google Scholar 

  • Molan AL, Attwood GT, Min BR, McNabb WC (2001) The effect of condensed tannins from Lotus pedunculatus and Lotus corniculatus on the growth of proteolytic rumen bacteria in vitro and their possible mode of action. Can J Microbiol 47:626–633

    Article  CAS  Google Scholar 

  • Morgavi DP, Kelly WJ, Janssen PH, Attwood GT (2012) Rumen microbial (meta)genomics and its application to ruminant production. Animal http://dx.doi.org/10.1017/S1751731112000419

  • Mosoni P, Martin C, Forano E, Morgavi DP (2011) Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. J Anim Sci 89:783–791

    Article  CAS  Google Scholar 

  • Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7:e38571

    Article  CAS  Google Scholar 

  • Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69:3181–3191

    Article  CAS  Google Scholar 

  • Qi M, Wang P, O’Toole N, Barboza PS, Ungerfeld E, Leigh MB, Selinger B, Butler G, Tsang A, McAllister TA, Forster RJ (2011) Snapshot of the eukaryotic gene expression in muskoxen rumen-a metatranscriptomic approach. PLoS ONE 6:e20521

    Article  CAS  Google Scholar 

  • Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA, Konkel ME, Angly F, Dinsdale EA, Edwards RA, Nelson KE, White BA (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS ONE 3:e2945

    Article  Google Scholar 

  • Reddy B, Singh KM, Patel AK, Antony A, Panchasara HJ, Joshi CG (2014) Insights into resistome and stress responses genes in Bubalus bubalis rumen through metagenomic analysis. Mol Biol Rep 2014 Jul 2 [Epub ahead of print]

    Google Scholar 

  • Rocheleau S, Greer CW, Lawrence JR, Cantin C, Laramee L, Guiot SR (1999) Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy. Appl Environ Microbiol 65:2222–2229

    CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub S, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured. Appl Environ Microbiol 66:2541–2547

    Article  CAS  Google Scholar 

  • Saengkerdsub S, Anderson RC, Wilkinson HH, Kim WK, Nisbet DJ, Ricke SC (2007) Identification and quantification of methanogenic archaea in adult chicken ceca. Appl Environ Microbiol 73:353–356

    Article  CAS  Google Scholar 

  • Sawanon S, Kobayashi Y (2006) Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and noncellulolytic Selenomonas ruminantium: evidence in defined cultures. Anim Sci J 77:208–214

    Article  CAS  Google Scholar 

  • Scheifinger CC, Wolin MJ (1973) Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. J Appl Microbiol 26:789–795

    CAS  Google Scholar 

  • Shin EC, Choi BR, Lim WJ, Hong SY, An CL, Cho KM (2004) Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10:313–319

    Article  CAS  Google Scholar 

  • Singh KM, Pandya PR, Parnerkar S, Tripathi AK, Ramani U, Koringa PG, Rank DN, Joshi CG, Kothari RK (2010a) Methanogenic diversity studies within the rumen of Surti buffaloes based on methyl coenzyme M reductase A (mcrA) genes point to Methanobacteriales. Pol J Microbiol 59:175–178

    CAS  Google Scholar 

  • Singh KM, Parnerkar S, Tripathi AK, Mehta HH, Rank DN, Kothari RK, Joshi CG (2010b) Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis. J Appl Genet 51:395–402

    Article  Google Scholar 

  • Singh KM, Tripathi AK, Pandya PR, Rank DN, Kothari RK, Joshi CG (2011) Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay. Curr Microbiol 63:281–288

    Article  CAS  Google Scholar 

  • Singh KM, Tripathi AK, Pandya PR, Parnerkar S, Rank DN, Kothari RK, Joshi CG (2012a) Methanogen diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis. Res Vet Sci 92:451–455

    Article  CAS  Google Scholar 

  • Singh KM, Ahir V, Tripathi AK et al (2012b) Metagenomic analysis of Surti buffalo 400 366 (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39(4):4841–4848

    Article  CAS  Google Scholar 

  • Singh KM, Jakhesara SJ, Koringa PG, Rank DN, Joshi CG (2012c) Metagenomic analysis of virulence associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene 507:146–151

    Article  CAS  Google Scholar 

  • Singh K, Pandya P, Tripathi A, Patel G, Parnerkar S, Kothari R, Joshi C (2013a) Molecular diversity of protozoa in rumen of Indian buffalo (Bubalus bubalis). Agric Res 2:360–366

    Article  Google Scholar 

  • Singh KM, Tripathi AK, Pandya PR, Parnerkar S, Rank DN, Kothari RK, Joshi CG (2013b) Use of real-time PCR technique in determination of major fibrolytic and non fibrolytic bacteria present in Indian Surti buffaloes (Bubalus bubalis). Pol J Microbiol 62:195–200

    CAS  Google Scholar 

  • Singh KM, Pandya PR, Tripathi AK, Patel GR, Parnerkar S, Kothari RK, Joshi CG (2014a) Study of rumen metagenome community using qPCR under different diets. Meta Gene 2:191–199

    Article  CAS  Google Scholar 

  • Singh KM, Tripathi AK, Pandya PR, Parnerkar S, Kothari RK, Joshi CG (2014b). Molecular genetic diversity and quantitation of methanogen in ruminal fluid of buffalo (Bubalus bubalis) fed ration (Wheat Straw and Concentrate Mixture Diet). Genet Res Int 2013 (2013), Article ID 980191, 7 p. ONLINE Journal

    Google Scholar 

  • Singh KM, Reddy B, Patel AK, Panchasara H, Parmar N, Patel AB, Shah TM, Bhatt VD, Joshi CG (2014c) Metagenomic analysis of buffalo rumen microbiome: effect of roughage diet on Dormancy and Sporulation genes. Meta Gene 2:252–268

    Article  CAS  Google Scholar 

  • Singh KM, Reddy B, Patel D, Patel AK, Parmar N, Patel A, Patel JB Joshi CG (2014d) High potential source for biomass degradation enzyme discovery and environmental aspects revealed through metagenomics of Indian buffalo rumen. Biomed Res Int 2014 (2014), Article ID 267189, 10 p

    Google Scholar 

  • Sizova MV, Panikov NS, Tourova TP, Flanagan PW (2003) Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a sphagnum peat bog. FEMS Microbiol Ecol 45:301–315

    Article  CAS  Google Scholar 

  • Smith AH, Mackie RI (2004) Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol 70:1104–1115

    Article  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  Google Scholar 

  • Stewart CS, Flint HJ Bryant MP, Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Blackie Academic and Professional, New York, pp 467–491

    Google Scholar 

  • Stiverson J, Morrison M, Yu Z (2011) Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int J Microbiol 2011:750613

    Article  Google Scholar 

  • Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, Nelson KE, Torralba M, Henrissat B, Coutinho PM, Cann IK, White BA, Fahey GC (2011) Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J 5:639–649

    Article  CAS  Google Scholar 

  • Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72

    Article  CAS  Google Scholar 

  • Tatsuoka N, Mohammed N, Mitsumori M, Hara K, Kurihara M, Itabashi H (2004) Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen. Lett Appl Microbiol 39:257–260

    Article  CAS  Google Scholar 

  • Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut bacteroidetes: the food connection. Front Microbiol 2:93

    Article  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Stephen P, Reilly J, Tim S, Chris S, Robert W (2009) Energy. Beneficial biofuels – the food, energy, and environment trilemma. Science 325:270–271

    Article  CAS  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  Google Scholar 

  • Tun HM, Brar MS, Khin N, Jun L, Hui RK, Dowd SE, Leung FC (2012) Gene-centric analysis of feline intestinal microbiome using 454 junior pyrosequencing. J Microbiol Methods 88:369–376

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Google Scholar 

  • Wallace RJ, Onodera R, Cotta MA (1997) Metabolism of nitrogen-containing compounds. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Chapman and Hall, London, pp 283–328

    Chapter  Google Scholar 

  • Williams AG (1986) Rumen holotrich ciliate protozoa. Microbiol Rev 50:25–49

    CAS  Google Scholar 

  • Williams AG, Coleman GS (1992) The rumen protozoa. Springer, New York

    Book  Google Scholar 

  • Woese CR, Vary JC, Halvorson HO (1968) A kinetic model for bacterial spore germination. Natl Acad Sci 59:869–875

    Article  CAS  Google Scholar 

  • Wright ADG, Williams AJ, Winder B, Christophersen C, Rodgers S, Smith K (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70:1263–1270

    Article  CAS  Google Scholar 

  • Xu B, Xu W, Yang F, Li J, Yang Y, Tang X, Yuelin M, Junpei Z, Zunxi H (2013) Metagenomic analysis of the pygmy loris fecal microbiome reveals unique functional capacity related to metabolism of aromatic compounds. PLoS ONE 8:e56565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Singh, K.M., Bagath, M., Chikara, S.K., Joshi, C.G., Kothari, R.K. (2015). Metagenomic Approaches in Understanding the Rumen Function and Establishing the Rumen Microbial Diversity. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2265-1_14

Download citation

Publish with us

Policies and ethics