Skip to main content

The Dynamic Discipline of Species Delimitation: Progress Toward Effectively Recognizing Species Boundaries in Natural Populations

  • Chapter
  • First Online:
Recent Advances in Lichenology

Abstract

Species represent a fundamental unit in evolutionary biology and provide a valuable context for organizing, evaluating, and communicating important biological concepts and principles. Empirical species delimitation is a dynamic discipline, with ongoing methodological and bioinformatical developments. Novel analytical methods, increasing availability of genetic/genomic data, increasing computational power, reassessments of morphological and chemical characters, and improved availability of distributional and ecological records offer exciting avenues for empirically exploring species delimitation and evolutionary relationships among species-level lineages. In this chapter, we aim to contribute a contemporary perspective on delimiting species, including a brief discussion on species concepts and practical direction for empirical species delimitation studies. Using lichen-forming fungi as an example, we illustrate the importance and difficulties in documenting and describing species-level biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahti T, Hawksworth DL (2005) Xanthoparmelia stenophylla, the correct name for X. somloënsis, one of the most widespread usnic acid containing species of the genus. The Lichenologist 37(4):363–366. doi:10.1017/S0024282905015197

    Google Scholar 

  • Altermann S, Leavitt SD, Goward T, Nelsen MP, Lumbsch HT (2014) How do you solve a problem like Letharia? A new look at cryptic species in lichen-forming fungi using Bayesian clustering and SNPSs from multilocus sequence data. PLoS ONE 9(5):e97556. doi:10.1371/journal.pone.0097556

  • Amo de Paz G, Cubas P, Crespo A, Elix JA, Lumbsch HT (2012) Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS ONE 7(6):e39683. doi:10.1371/journal.pone.0039683

    CAS  PubMed  Google Scholar 

  • Argüello A, Del Prado R, Cubas P, Crespo A (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biol J Linn Soc 91(3):455–467. doi:10.1111/j.1095-8312.2007.00810.x

    Google Scholar 

  • Arup U, Berlin ES (2011) A taxonomic study of Melanelixia fuliginosa in Europe. The Lichenologist 43(02):89–97. doi:10.1017/S0024282910000678

    Google Scholar 

  • Arup U, Grube M (2000) Is Rhizoplaca (Lecanorales, lichenized Ascomycota) a monophyletic genus? Can J Bot 78(3):318–327. doi:10.1139/b00-006

    Google Scholar 

  • Avise J, Ball R (1990) Principles of genealogical concordance in species concepts and biological taxonomy. Oxf Surv Evol Biol 7:45–67

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376. doi:10.1371/journal.pone.0003376

    PubMed Central  PubMed  Google Scholar 

  • Baum DA, Shaw KL (1995) Genealogical perspectives on the species problem. In: Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden, St. Louis, pp 289–303

    Google Scholar 

  • Beaumont MA, Nielsen R, Robert C, Hey J, Gaggiotti O, Knowles L, Estoup A, Panchal M, Corander J, Hickerson M, Sisson SA, Fagundes N, Chikhi L, Beerli P, Vitalis R, Cornuet J-M, Huelsenbeck J, Foll M, Yang Z, Rousset F, Balding D, Excoffier L (2010) In defence of model-based inference in phylogeography. Mol Ecol 19(3):436–446. doi:10.1111/j.1365-294X.2009.04515.x

    CAS  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155. doi:10.1016/j.tree.2006.11.004

    PubMed  Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20(1989):1–28

    Google Scholar 

  • Bond J, Stockman A (2008) An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Syst Biol 57(4):628–646. doi:10.1080/10635150802302443

    CAS  PubMed  Google Scholar 

  • Brodo IM (1978) Changing concepts regarding chemical diversity in lichens. The Lichenologist 10(1):1–11. doi:10.1017/S0024282978000031

    CAS  Google Scholar 

  • Brodo IM (1986) Interpreting chemical variation in lichens for systematic purposes. The Bryologist 89(2):132–138

    CAS  Google Scholar 

  • Caley MJ, Fisher R, Mengersen K (2014) Global species richness estimates have not converged. Trends Ecol Evol 29(4):187–188. doi:10.1016/j.tree.2014.02.002

    PubMed  Google Scholar 

  • Camargo A, Sites JW (2013) Species delimitation: a decade after the Renaissance. In: Pavlinov I (ed) The species problem—ongoing issues. InTech. doi:10.5772/52664

  • Camargo A, Morando M, Avila LJ, Sites JW (2012) Species delimitation with ABC and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Evolution 66(9):2834–2849. doi:10.1111/j.1558-5646.2012.01640.x

    PubMed  Google Scholar 

  • Carstens BC, Dewey TA (2010) Species delimitation using a combined coalescent and information-theoretic approach: an example from North American Myotis bats. Syst Biol 59(4):400–414. doi:10.1093/sysbio/syq024

    PubMed Central  PubMed  Google Scholar 

  • Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22(17):4369–4383. doi:10.1111/mec.12413

    PubMed  Google Scholar 

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multi-locus molecular markers. Mol Ecol 15(10):2833–2843. doi:10.1111/j.1365-294X.2006.02994.x

    PubMed  Google Scholar 

  • Corander J, Waldmann P, Marttinen P, Sillanpaa M (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20(15):2363–2369. doi:10.1093/bioinformatics/bth250

    CAS  PubMed  Google Scholar 

  • Corander J, Marttinen P, Mantyniemi S (2006) Bayesian identification of stock mixtures from molecular marker data. Fish Bull 104:550–558

    Google Scholar 

  • Corander J, Marttinen P, Siren J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinf 9(1):539. doi:10.1186/1471-2105-9-539

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Cracraft J (1983) Species concepts and speciation analysis. Curr Ornithol 1:159–187

    Google Scholar 

  • Crespo A, Lumbsch HT (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1:167–170. doi:10.5598/imafungus.2010.01.02.09

    PubMed Central  PubMed  Google Scholar 

  • Crespo A, Pérez-Ortega S (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardin Botanico de Madrid 66(S1):71–81. doi:10.3989/ajbm.2225

    Google Scholar 

  • Crespo A, Kauff F, Divakar PK, del Prado R, Perez-Ortega S, Amo de Paz G, Ferencova Z, Blanco O, Roca-Valiente B, Nunez-Zapata J, Cubas P, Arguello A, Elix JA, Esslinger TL, Hawksworth DL, Millanes A, Molina MC, Wedin M, Ahti T, Aptroot A, et al (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59(6):1735–1753

    Google Scholar 

  • Culberson WL (1969) The use of chemistry in the systematics of the lichens. Taxon 18:498–505

    Google Scholar 

  • Culberson WL (1970) Chemosystematics and ecology of lichen-forming fungi. Annu Rev Ecol Syst 1:153–170

    CAS  Google Scholar 

  • Culberson CF, Culberson WL (1976) Chemosyndromic variation in lichens. Syst Bot 1:325–339

    CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. J. Murray, London

    Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85(3):407–415. doi:10.1111/j.1095-8312.2005.00503.x

    Google Scholar 

  • de Queiroz K (1998) The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 57–75

    Google Scholar 

  • de Queiroz K (1999) The general lineage concept of species and the defining properties of the species category. In: Wilson RA (ed) Species: new interdisciplinary essays. MIT Press, Cambridge, pp 49–89

    Google Scholar 

  • de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886. doi:10.1080/10635150701701083

    PubMed  Google Scholar 

  • de Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Annu Rev Ecol Syst 26(1):657–681. doi:10.1146/annurev.es.26.110195.003301

    Google Scholar 

  • Degnan J, Rosenberg N (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2(5):e68. doi:10.1371/journal.pgen.0020068

    PubMed Central  PubMed  Google Scholar 

  • Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24(6):332–340. doi:http://dx.doi.org/10.1016/j.tree.2009.01.009

  • Del-Prado R, Cubas P, Lumbsch HT, Divakar PK, Blanco O, de Paz GA, Molina MC, Crespo A (2010) Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Mol Phylogenet Evol 56(1):125–133. doi:10.1016/j.ympev.2010.04.014

    CAS  PubMed  Google Scholar 

  • Del-Prado R, Divakar PK, Crespo A (2011) Using genetic distances in addition to ITS molecular phylogeny to identify potential species in the Parmotrema reticulatum complex: a case study. The Lichenologist 43(06):569–583. doi:10.1017/S0024282911000582

    Google Scholar 

  • Del-Prado R, Blanco O, Lumbsch HT, Divakar PK, Elix JA, Molina MC, Crespo A (2013) Molecular phylogeny and historical biogeography of the lichen-forming fungal genus Flavoparmelia (Ascomycota: Parmeliaceae). Taxon 62(5):928–939. doi:10.12705/625.22

    Google Scholar 

  • Dettman J, Jacobson D, Taylor J (2003a) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57(12):2703–2720. doi:10.1111/j.0014-3820.2003.tb01514.x

    PubMed  Google Scholar 

  • Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW (2003b) Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57(12):2721. doi:10.1554/03-074

    PubMed  Google Scholar 

  • Devkota S, Cornejo C, Werth S, Chaudhary RP, Scheidegger C (2014) Characterization of microsatellite loci in the Himalayan lichen fungus Lobaria pindarensis (Lobariaceae). Appl Plant Sci 2(5):1300101. doi:10.3732/apps.1300101

    Google Scholar 

  • Divakar PK, Molina MC, Lumbsch HT, Crespo A (2005) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. The Lichenologist 37(01):37–46. doi:10.1017/S0024282904014641

    Google Scholar 

  • Divakar PK, Amo De paz G, del Prado R, Esslinger TL, Crespo A (2007) Upper cortex anatomy corroborates phylogenetic hypothesis in species of Physconia (Ascomycota, Lecanoromycetes). Mycol Res 111(11):1311–1320. doi:10.1016/j.mycres.2007.08.009

  • Divakar PK, Figueras G, Hladun N, Crespo A (2010) Molecular phylogenetic studies reveal an undescribed species within the North American concept of Melanelixia glabra (Parmeliaceae). Fungal Divers 42(1):47–55. doi:10.1007/s13225-010-0027-3

    Google Scholar 

  • Donoghue MJ, Gauthier A (2004) Implementing the phylocode. Trends Ecol Evol 19(6):281–282. doi:10.1016/j.tree.2004.04.004

    PubMed  Google Scholar 

  • Eaton DAR, Ree RH (2013) Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Syst Biol 62(5):689–706. doi:10.1093/sysbio/syt032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63(1):1–19. doi:10.1111/j.1558-5646.2008.00549.x

    CAS  PubMed  Google Scholar 

  • Edwards DL, Knowles LL (2014) Species detection and individual assignment in species delimitation: can integrative data increase efficacy? Proc R Soc B: Biol Sci 281(1777). doi:10.1098/rspb.2013.2765

  • Egan RS (1986) Correlations and non-correlations of chemical variation patterns with lichen morphology and geography. The Bryologist 89:99–110

    CAS  Google Scholar 

  • Elix JA, Corush J, Lumbsch HT (2009) Triterpene chemosyndromes and subtle morphological characters characterise lineages in the Physcia aipolia group in Australia (Ascomycota). Syst Biodivers 7(04):479–487. doi:10.1017/S1477200009990223

    Google Scholar 

  • Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM (2010) Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci 107(37):16196–16200. doi:10.1073/pnas.1006538107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ence DD, Carstens BC (2011) SpedeSTEM: a rapid and accurate method for species delimitation. Mol Ecol Resour 11(3):473–480. doi:10.1111/j.1755-0998.2010.02947.x

    PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587. doi:10.1111/j.1471-8286.2007.01758.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan HH, Kubatko LS (2011) Estimating species trees using approximate Bayesian computation. Mol Phylogenet Evol 59(2):354–363. doi:10.1016/j.ympev.2011.02.019

    PubMed  Google Scholar 

  • Fernández-Mendoza F, Printzen C (2013) Pleistocene expansion of the bipolar lichen Cetraria aculeata into the Southern hemisphere. Mol Ecol 22(7):1961–1983. doi:10.1111/mec.12210

    PubMed  Google Scholar 

  • Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martin MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20(6):1208–1232. doi:10.1111/j.1365-294X.2010.04993.x

    PubMed  Google Scholar 

  • Fraley C, Raftery A (2007) Model-based methods of classification: Using the mclust software in chemometrics. J Stat Softw 18:i06 [Available online at http://www.doaj.org/doaj?func=abstract&id=218544]

  • Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Syst Biol 62(5):707–724. doi:10.1093/sysbio/syt033

    PubMed Central  PubMed  Google Scholar 

  • Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27(9):480–488. doi:10.1016/j.tree.2012.04.012

    PubMed  Google Scholar 

  • Gatesy J, O’Grady P, Baker RH (1999) Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level Artiodactyl taxa. Cladistics 15(3):271–313. doi:10.1111/j.1096-0031.1999.tb00268.x

    Google Scholar 

  • Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, de Vienne DM, Rodríguez de la Vega RC, Branco S, Giraud T (2014) Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol 23(4):753–773. doi:10.1111/mec.12631

  • Goffinet B, Miadlikowska J, Goward T (2003) Phylogenetic inferences based on nrDNA sequences support five morphospecies within the Peltigera didactyla complex (Lichenized Ascomycota). The Bryologist 106(3):349–364. doi:10.1639/01

    CAS  Google Scholar 

  • Gowan SP (1986) Evolution of secondary natural products in the genus Porpidia (Ascomycata, Porpidiaceae). Am J Bot 73:606

    Google Scholar 

  • Griffin PC, Hoffmann AA (2014) Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges. Ann Bot. doi:10.1093/aob/mcu017

  • Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res 111(9):1116–1132. doi:10.1016/j.mycres.2007.04.008

    PubMed  Google Scholar 

  • Gueidan C, Savi S, Thues H, Roux C, Keller C, Tibell L, Prieto M, Heimarsson S, Breuss O, Orange A, Froberg L, Wynns AA, Navarro-Rosines P, Krzewicka B, Pykaelae J, Grube M, Lutzoni F (2009) Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58(1):184–208

    Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5(3):712–715. doi:10.1111/j.1471-8286.2005.01031.x

    CAS  Google Scholar 

  • Guillot G, Renaud S, Ledevin R, Michaux J, Claude J (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst Biol 61(6):897–911. doi:10.1093/sysbio/sys038

    PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Google Scholar 

  • Hale ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Hamilton CA, Hendrixson BE, Brewer MS, Bond JE (2014) An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Mol Phylogenet Evol 71:79–93. doi:10.1016/j.ympev.2013.11.007

    CAS  PubMed  Google Scholar 

  • Hausdorf B (2011) Progress toward a general species concept. Evolution 65(4):923–931. doi:10.1111/j.1558-5646.2011.01231.x

    PubMed  Google Scholar 

  • Hausdorf B, Hennig C (2010) Species delimitation using dominant and codominant multilocus markers. Syst Biol 59(5):491–503. doi:10.1093/sysbio/syq039

    CAS  PubMed  Google Scholar 

  • Hawksworth DL (1976) Lichen chemotaxonomy. In: Bailey RH (ed) Lichenology: progress and problems. Academic, London, pp 139–184

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270(1512):313–321. doi:10.1098/rspb.2002.2218

    CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2(10):e312. doi:10.1371/journal.pbio.0020312

    PubMed Central  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27(3):570–580. doi:10.1093/molbev/msp274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21(8):447–450. doi:10.1016/j.tree.2006.05.011

    PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification on environmental sequences. Fungal Biol Rev 25:38–47. doi:10.1016/j.fbr.2011.01.001

    Google Scholar 

  • Högnabba F, Wedin M (2003) Molecular phylogeny of the Sphaerophorus globosus species complex. Cladistics 19(3):224–232. doi:10.1111/j.1096-0031.2003.tb00365.x

    Google Scholar 

  • Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56(8):1557. doi:10.1111/j.0014-3820.2002.tb01467.x

    PubMed  Google Scholar 

  • Huelsenbeck JP, Andolfatto P, Huelsenbeck ET (2011) Structurama: Bayesian inference of population structure. Evol Bioinf Online 7(2011):55–59. doi:10.4137/EBO.S6761

    Google Scholar 

  • Jones G, Oxelman B (2014) DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics. doi:10.1101/003178

  • Kekkonen M, Hebert PD (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol Ecol Res. doi:10.1111/1755-0998.12233

  • Kelly LJ, Hollingsworth PM, Coppins BJ, Ellis CJ, Harrold P, Tosh J, Yahr R (2011) DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol 191(1):288–300. doi:10.1111/j.1469-8137.2011.03677.x

    PubMed  Google Scholar 

  • Kiss L (2012) Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for fungi. Proc Natl Acad Sci 109(27):E1811–E1811. doi:10.1073/pnas.1207143109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis for relationships among Epicrates (Boidae, Serpentes). Syst Zool 38(1):7–25. doi:10.1093/sysbio/38.1.7

    Google Scholar 

  • Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Syst Biol 56(6):887–895. doi:10.1080/10635150701701091

    PubMed  Google Scholar 

  • Kroken S, Taylor JW (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93(1):38–53

    CAS  Google Scholar 

  • Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56(1):17–24. doi:10.1080/10635150601146041

    CAS  PubMed  Google Scholar 

  • Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE Jr (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignments at low levels of population differentiation. Conserv Genet 7(2):295–302. doi:10.1007/s10592-005-9098-1

    Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. The Bryologist 89(2):111–122

    CAS  Google Scholar 

  • Le Gac M, Hood ME, Fournier E, Giraud T (2007) Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61(1):15–26. doi:10.1111/j.1558-5646.2007.00002.x

    PubMed  Google Scholar 

  • Leaché AD (2009) Species tree discordance traces to phylogeographic clade boundaries in North American fence lizards (Sceloporus). Syst Biol 58(6):547–559. doi:10.1093/sysbio/syp057

    PubMed  Google Scholar 

  • Leaché AD, Fujita MK (2010) Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proc R Soc B: Biol Sci 277:3071–3077. doi:10.1098/rspb.2010.0662

    Google Scholar 

  • Leaché AD, Koo M, Spencer C, Papenfuss T, Fisher R, McGuire J (2009) Quantifying ecological, morphological, and genetic variation to delimit species in the coast horned lizard species complex (Phrynosoma). Proc Natl Acad Sci USA 106:12418–12423. doi:10.1073/pnas.0906380106

    PubMed Central  PubMed  Google Scholar 

  • Leaché AD, Fujita MK, Minin VN, Bouckaert RR (2014) Species delimitation using genome-wide SNP data. Systematic Biology. doi:10.1093/sysbio/syu018

  • Leavitt SD, Fankhauser JD, Leavitt DH, Porter LD, Johnson LA, St. Clair LL (2011a) Complex patterns of speciation in cosmopolitan “rock posy” lichens—discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Mol Phylogenet Evolu 59(3):587–602. doi:10.1016/j.ympev.2011.03.020

  • Leavitt SD, Johnson L, St. Clair LL (2011b) Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. Am J Bot 98 (2):175–188. doi:10.3732/ajb.1000230

  • Leavitt SD, Johnson LA, Goward T, St. Clair LL (2011c) Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol Phylogen Evol 60(3):317–332. doi:10.1016/j.ympev.2011.05.012

  • Leavitt S, Esslinger T, Divakar P, Lumbsch H (2012a) Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evol Biol 12(1):176. doi:10.1186/1471-2148-12-176

    PubMed Central  PubMed  Google Scholar 

  • Leavitt SD, Esslinger TL, Divakar PK, Lumbsch HT (2012b) Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae). Biol J Linn Soc 1007:920–937. doi:10.1111/j.1095-8312.2012.01978.x

    Google Scholar 

  • Leavitt SD, Esslinger TL, Lumbsch HT (2012c) Neogene-dominated diversification in neotropical montane lichens: dating divergence events in the lichen-forming fungal genus Oropogon (Parmeliaceae). Am J Bot 99(11):1764–1777. doi:10.3732/ajb.1200146

    PubMed  Google Scholar 

  • Leavitt SD, Esslinger TL, Nelsen MP, Lumbsch HT (2013a) Further species diversity in Neotropical Oropogon (Lecanoromycetes: Parmeliaceae) in Central America. The Lichenologist 45(04):553–564. doi:10.1017/S0024282913000212

    Google Scholar 

  • Leavitt SD, Esslinger TL, Spribille T, Divakar PK, Lumbsch HT (2013b) Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): insights on diversity, distributions, and a comparison of species tree and concatenated topologies. Mol Phylogenet Evol 66(2013):138–152. doi:10.1016/j.ympev.2012.09.013

    PubMed  Google Scholar 

  • Leavitt SD, Fernández-Mendoza F, Pérez-Ortega S, Sohrabi M, Divakar PK, Lumbsch HT, St. Clair LL (2013c) DNA barcode identification of lichen-forming fungal species in the Rhizoplaca melanophthalma species-complex (Lecanorales, Lecanoraceae), including five new species. MycoKeys 7:1–22. doi:10.3897/mycokeys.7.4508

  • Leavitt SD, Fernández-Mendoza F, Pérez-Ortega S, Sohrabi M, Divakar PK, Vondrák J, Thorsten Lumbsch H, Clair LLS (2013d) Local representation of global diversity in a cosmopolitan lichen-forming fungal species complex (Rhizoplaca, Ascomycota). J Biogeogr 40(9):1792–1806. doi:10.1111/jbi.12118

  • Leavitt SD, Lumbsch HT, Stenroos S, St. Clair LL (2013e) Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8(12):e85240. doi:10.1371/journal.pone.0085240

  • Leavitt SD, Esslinger TL, Hansen ES, Divakar PK, Crespo A, Loomis BF, Lumbsch HT (2014) DNA barcoding of brown Parmeliae (Parmeliaceae) species: a molecular approach for accurate specimen identification, emphasizing species in Greenland. Organ Divers Evol 14(1):11–20. doi:10.1007/s13127-013-0147-1

    Google Scholar 

  • Leliaert F, Verbruggen H, Vanormelingen P, Steen F, Lopez-Bautista JM, Zuccarello GC, De Clerck O (2014) DNA-based species delimitation in algae. Eur J Phycol 49(2). doi:10.1080/09670262.2014.904524

  • Leuckert C (1985) Probleme der Flechten-Chemotaxonomie—Stoffkombinationen und ihre taxonomische Wertung. Ber Deut Bot Ges 98:401–408

    CAS  Google Scholar 

  • Lewis ZA, Shiver AL, Stiffler N, Miller MR, Johnson EA, Selker EU (2007) High-density detection of restriction-site-associated DNA markers for rapid mapping of mutated loci in Neurospora. Genetics 177(2):1163–1171. doi:10.1534/genetics.107.078147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindblom L, Søchting U (2008) Taxonomic revision of Xanthomendoza borealis and Xanthoria mawsonii (Lecanoromycetes, Ascomycota). The Lichenologist 40(05):399–409. doi:10.1017/S0024282908007937

    Google Scholar 

  • Lohtander K, Källersjö M, Roland M, Tehler A (2000) The family physciaceae in fennoscandia: phylogeny inferred from its sequences. Mycologia 92(4):728–735

    CAS  Google Scholar 

  • Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. In: Woodin SJ, Marquiss M (eds) Ecology of Arctic Environments. Blackwell Science, Oxford, pp 69–96 (Special publication No. 13)

    Google Scholar 

  • Lücking R (2012) Predicting species richness in tropical lichenized fungi with ‘modular’ combinations of character states. Biodiver Conserv 21(9):2341–2360. doi:10.1007/s10531-011-0217-7

    Google Scholar 

  • Lücking R, del Prado R, Lumbsch HT, Will-Wolf S, Aptroot A, Sipman HJM, Umana L, Chaves JL (2008) Phytogenetic patterns of morphological and chemical characters and reproductive mode in the Heterodermia obscurata group in Costa Rica (Ascomycota, Physciaceae). Syst Biodivers 6(1):31–41. doi:10.1017/S1477200007002629

    Google Scholar 

  • Lumbsch HT (1994) Die Lecanora subfusca-Gruppe in Australasien. J Hattori Bot Lab 77:1–175

    Google Scholar 

  • Lumbsch HT (1998a) Taxonomic use of metabolic data in lichen-forming fungi. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical Fungal Taxonomy. Marcel Dekker, New York, pp 345–387

    Google Scholar 

  • Lumbsch HT (1998b) The use of metabolic data in lichenology at the species and subspecific levels. The Lichenologist 30(4–5):357–367. doi:10.1017/S0024282992000380

    Google Scholar 

  • Lumbsch HT (2002) Analysis of phenolic products in lichens for identification and taxonomy. Protocols in lichenology. Culturing, biochemistry, ecophysiology and use in biomonitoring. Springer, Berlin

    Google Scholar 

  • Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers 50(1):59–72. doi:10.1007/s13225-011-0123-z

    Google Scholar 

  • Lumbsch HT, Ahti T, Altermann S, Amo de Paz G, Aptroot A, Arup U, Barcenas Peña A, Bawingan PA, Benatti MN, Betancourt L, Björk CR, Boonpragob K, Brand M, Bungartz F, Caceres MES, Candan M, Chaves JL, Clerc P, Common R, Coppins BJ, Crespo A, Dal Forno M, Divakar PK, Duya MV, Elix JA, Elvebakk A, Fankhauser J, Farkas E, Ferraro LI, Fischer E, Galloway DJ, Gaya E, Giralt M, Goward T, Grube M, Hafellner J, Hernandez JE, Herrera-Campos MA, Kalb K, Kärnefelt I, Kantvilas G, Killmann D, Kirika P, Knudesn K, Komposch H, Kondratyuk S, Lawrey JD, Mangold A, Marcelli MP, McCune BP, Michlig A, Miranda Gonzalez R, Moncada B, Naikatini A, Nelsen MP, Øvstedal DO, Palice Z, Papong K, Parnmen S, Pérez-Ortega S, Printzen C, Rico VJ, Rivas Plata E, Robayo J, Rosabal D, Ruprecht U, Salazar Allen N, Sancho L, Santos de Jesus L, Santos Vieira T, Schultz M, Seaward MRD, Sérusiaux E, Schmitt I, Sipman HJM, Sohrabi M, Søchting U, Søgaard MZ, Sparrius LB, Spielmann A, Spribille T, Sutjaritturakan J, Thammathaworn A, Thell A, Thor G, Thüs H, Timdal E, Truong C, Türk R, Umaña Tenorio L, Upreti D, van den Boom P, Vivas Rebuelta M, Wedin M, Will-Wolf S, Wirth V, Wirtz N, Yahr R, Yeshitela K, Ziemmeck F, Wheeler T, Lücking R (2011) One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18:1–127

    Google Scholar 

  • Mark K, Saag L, Saag A, Thell A, Randlane T (2012) Testing morphology-based delimitation of Vulpicida juniperinus and V. tubulosus (Parmeliaceae) using three molecular markers. The Lichenologist 44(06):757–772. doi:10.1017/S0024282912000448

    Google Scholar 

  • Martín MP, LaGreca S, Lumbsch HT (2003) Molecular phylogeny of Diploschistes inferred from ITS sequence data. The Lichenologist 35(01):27–32. doi:10.1006/lich.2002.0427

    Google Scholar 

  • Masters BC, Fan V, Ross HA (2011) Species delimitation—a geneious plugin for the exploration of species boundaries. Mol Ecol Res 11(1):154–157. doi:10.1111/j.1755-0998.2010.02896.x

    Google Scholar 

  • Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman & Hall, London, pp 381–424

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1970) Populations, species, and evolution. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • McCune B (2000) Lichen communities as indicators of forest health. The Bryologist 103(2):353–356. doi:10.1639/0007-2745(2000)103[0353:LCAIOF]2.0.CO;2

    Google Scholar 

  • McCune B, Printzen C (2011) Distribution and climatic niches of the Lecanora varia group in western U.S.A. Bibliotheca Lichenologica 106:225–234

    Google Scholar 

  • McDonald T, Miadlikowska J, Lutzoni F (2003) The lichen genus Sticta in the Great Smoky Mountains: a phylogenetic study of morphological, chemical, and molecular data. The Bryologist 106(1):61–79. doi:10.1639/0007-2745(2003)106[0061:TLGSIT]2.0.CO;2

    CAS  Google Scholar 

  • McKay BD, Mays HL, Wu Y, Li H, Yao C-T, Nishiumi I, Zou F (2013) An empirical comparison of character-based and coalescent-based approaches to species delimitation in a young avian complex. Mol Ecol 22(19):4943–4957. doi:10.1111/mec.12446

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17(2):240–248. doi:10.1101/gr.5681207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miralles A, Vences M (2013) New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS ONE 8(7):e68242. doi:10.1371/journal.pone.0068242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishler BD, Brandon RN (1987) Individuality, pluralism, and the phylogenetic species concept. Biol Philos 2:397

    Google Scholar 

  • Molina M, Crespo A, Blanco O, Lumbsch HT, Hawksworth DL (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. The Lichenologist 36(01):37–54. doi:10.1017/S0024282904013933

  • Molina M, Del-Prado R, Divakar P, Sánchez-Mata D, Crespo A (2011) Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organ Divers Evol 11(5):331–342. doi:10.1007/s13127-011-0060-4

    Google Scholar 

  • Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, Lees DC, Ranaivosolo R, Eggleton P, Barraclough TG, Vogler AP (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 58(3):298–311. doi:10.1093/sysbio/syp027

    CAS  PubMed  Google Scholar 

  • Moncada B, Reidy B, Lücking R (2014) A phylogenetic revision of Hawaiian Pseudocyphellaria (lichenized Ascomycota: Lobariaceae) reveals eight new species and a high degree of inferred endemism. The Bryologist 117(2):119–160. doi: http://dx.doi.org/10.1639/0007-2745-117.2.119

  • Moreau CS (2009) Inferring ant evolution in the age of molecular data. Myrmecological New 12:201

    Google Scholar 

  • Muggia L, Grube M, Tretiach M (2008) A combined molecular and morphological approach to species delimitation in black-fruited, endolithic Caloplaca: high genetic and low morphological diversity. Mycol Res 112(1):36–49. doi:10.1016/j.mycres.2007.02.001

    PubMed  Google Scholar 

  • Muggia L, Pérez-Ortega S, Fryday A, Spribille T, Grube M (2014) Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra. Fungal Divers 64(1):233–251. doi:10.1007/s13225-013-0271-4

    Google Scholar 

  • Nash TH, Zavada M (1977) Population studies among Sonoran Desert species of Parmelia subg. Xanthoparmelia (Parmeliaceae). Am J Bot 64(6):664–669

    Google Scholar 

  • Nylander W (1866a) Circa novum in studio Lichenum criterium chemicum. Flora 49:198–201

    Google Scholar 

  • Nylander W (1866b) Hypochlorite of lime and hydrate of potash. Two new criteria for the study of lichens (Tanslated and communicated by the Rev. W. A. Leighton). Bot J Linn Soc 9:358–365

    Google Scholar 

  • O’Brien HE, Miadlikowska J, Lutzoni F (2009) Assessing reproductive isolation in highly diverse communities of the lichen-forming fugnal genus Peltigera. Evolution 63(8):2076–2086. doi:10.1111/j.1558-5646.2009.00685.x

    PubMed  Google Scholar 

  • O’Meara BC (2010) New heuristic methods for joint species delimitation and species tree inference. Syst Biol 59(1):59–73. doi:10.1093/sysbio/syp077

    PubMed  Google Scholar 

  • O’Neill EM, Schwartz R, Bullock CT, Williams JS, Shaffer HB, Aguilar-Miguel X, Parra-Olea G, Weisrock DW (2013) Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Mol Ecol 22(1):111–129. doi:10.1111/mec.12049

    PubMed  Google Scholar 

  • Orock EA, Leavitt SD, Fonge BA, St. Clair LL, Lumbsch HT (2012) DNA-based identification of lichen-forming fungi: Can publicly available sequence databases aid in lichen diversity inventories of Mount Cameroon (West Africa)? The Lichenologist 44(6):833–839. doi:10.1017/S0024282912000424

  • Otálora MAG, Martínez I, Aragón G, Molina MC (2010) Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern. Am J Bot 97(2):216–223. doi:10.3732/ajb.0900064

    PubMed  Google Scholar 

  • Padial J, Castroviejo-Fisher S, Kohler J, Vila C, Chaparro J, De la Riva I (2009) Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zoolog Scr 38(4):431–447. doi:10.1111/j.1463-6409.2008.00381.x

    Google Scholar 

  • Padial J, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zoo 7(1):16. doi:10.1186/1742-9994-7-16

    Google Scholar 

  • Papong K, Lücking R, Thammathaworn A, Boonpragob K (2009) Four new taxa of Chroodiscus (thelotremoid Graphidaceae) from Southeast Asia. The Bryologist 112(1):152–163. doi:10.1639/0007-2745-112.1.152

    Google Scholar 

  • Park S-Y, Choi J, Kim JA, Jeong M-H, Kim S, Lee Y-H, Hur J-S (2013a) Draft genome sequence of Cladonia macilenta KoLRI003786, a lichen-forming fungus producing biruloquinone. Genome Announcements 1(5):e00695-13. doi:10.1128/genomeA.00695-13

    PubMed Central  PubMed  Google Scholar 

  • Park S-Y, Choi J, Kim JA, Yu N-H, Kim S, Kondratyuk SY, Lee Y-H, Hur J-S (2013b) Draft genome sequence of lichen-forming fungus Caloplaca flavorubescens Strain KoLRI002931. Genome Announcements 1(4):e00678-13. doi:10.1128/genomeA.00678-13

    PubMed Central  PubMed  Google Scholar 

  • Park S-Y, Choi J, Lee G-W, Kim JA, Oh S-O, Jeong M-H, Yu N-H, Kim S, Lee Y-H, Hur J-S (2014) Draft genome sequence of lichen-forming fungus Cladonia metacorallifera Strain KoLRI002260. Genome Announcements 2(1):e01065-13. doi:10.1128/genomeA.01065-13

    PubMed Central  PubMed  Google Scholar 

  • Parnmen S, Rangsiruji A, Mongkolsuk P, Boonpragob K, Nutakki A, Lumbsch HT (2012) Using phylogenetic and coalescent methods to understand the species diversity in the Cladia aggregata complex (Ascomycota, Lecanorales). PLoS ONE 7(12):e52245. doi:10.1371/journal.pone.0052245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Ortega S, Fernández-Mendoza F, Raggio J, Vivas M, Ascaso C, Sancho LG, Printzen C, de los Ríos A (2012) Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification? Ann Bot 109(6):1133–1148. doi:10.1093/aob/mcs042

  • Pino-Bodas R, Burgaz A, Martín M, Lumbsch HT (2011) Phenotypical plasticity and homoplasy complicate species delimitation in the Cladonia gracilis group (Cladoniaceae, Ascomycota). Organ Divers Evol 11(5):343–355. doi:10.1007/s13127-011-0062-2

    Google Scholar 

  • Pino-Bodas R, Burgaz AR, Martin MP, Lumbsch HT (2012a) Species delimitations in the Cladonia cariosa group (Cladoniaceae, Ascomycota). The Lichenologist 44(01):121–135. doi:10.1017/S002428291100065X

    Google Scholar 

  • Pino-Bodas R, Martín M, Burgaz A (2012b) Cladonia subturgida and C. iberica (Cladoniaceae) form a single, morphologically and chemically polymorphic species. Mycol Prog 11(1):269–278. doi:10.1007/s11557-011-0746-1

    Google Scholar 

  • Pino-Bodas R, Ahti T, Stenroos S, Martín MP, Burgaz AR (2013a) Multilocus approach to species recognition in the Cladonia humilis complex (Cladoniaceae, Ascomycota). Am J Bot 100(4):664–678. doi:10.3732/ajb.1200162

    PubMed  Google Scholar 

  • Pino-Bodas R, Martín AP, Burgaz AR, Lumbsch HT (2013b) Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Mol Ecol Resour 13(6):1058–1068. doi:10.1111/1755-0998.12086

    CAS  PubMed  Google Scholar 

  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55(4):595–609. doi:10.1080/10635150600852011

    PubMed  Google Scholar 

  • Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2014) Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem Cycles 28(2):71–85. doi:10.1002/2013GB004705

    CAS  Google Scholar 

  • Pringle A, Baker DM, Platt JL, Wares JP, Latgé JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59(9):1886–1899. doi:10.1554/04-241.1

    CAS  PubMed  Google Scholar 

  • Printzen C (2009) Lichen systematics: the role of morphological and molecular data to reconstruct phylogenetic relationships. Progress in botany, vol 71. Springer, Berlin, pp 233–275

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21(8):1864–1877. doi:10.1111/j.1365-294X.2011.05239.x

    CAS  PubMed  Google Scholar 

  • Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56(6):907–923. doi:10.1080/10635150701775111

    PubMed  Google Scholar 

  • Ray J (1686) Historia planarum, vol 1. Clark, London

    Google Scholar 

  • Reese Næsborg R, Ekman S, Tibell L (2007) Molecular phylogeny of the genus Lecania (Ramalinaceae, lichenized Ascomycota). Mycol Res 111(5):581–591. doi:10.1016/j.mycres.2007.03.001

    PubMed  Google Scholar 

  • Reid N, Carstens B (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12(1):196. doi:10.1186/1471-2148-12-196

    PubMed Central  PubMed  Google Scholar 

  • Rissler L, Apodaca J (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). Syst Biol 56:924–942. doi:10.1080/10635150701703063

    PubMed  Google Scholar 

  • Rivas Plata E, Lücking R (2013) High diversity of Graphidaceae (lichenized Ascomycota: Ostropales) in Amazonian Perú. Fungal Divers 58(1):13–32. doi:10.1007/s13225-012-0172-y

    Google Scholar 

  • Rivas Plata E, Lumbsch HT (2011) Parallel evolution and phenotypic divergence in lichenized fungi: a case study in the lichen-forming fungal family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Mol Phylogenet Evol 61(1):45–63. doi:10.1016/j.ympev.2011.04.025

    PubMed  Google Scholar 

  • Rogers RW (1989) Chemical variation and the species concept in lichenized ascomycetes. Bot J Linn Soc 101:229–239

    Google Scholar 

  • Ross HA (2014) The incidence of species-level paraphyly in animals: a re-assessment. Mol Phylogenet Evol 76:10–17. doi:10.1016/j.ympev.2014.02.021

    PubMed  Google Scholar 

  • Ross KG, Gotzek D, Ascunce MS, Shoemaker DD (2010) Species delimitation: a case study in a problematic ant taxon. Syst Biol 59(2):162–184. doi:10.1093/sysbio/syp089

    CAS  PubMed  Google Scholar 

  • Rubin BER, Ree RH, Moreau CS (2012) Inferring phylogenies from RAD sequence data. PLoS ONE 7(4):e33394. doi:10.1371/journal.pone.0033394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20(4):1026–1033. doi:10.1111/j.1523-1739.2006.00372.x

    PubMed  Google Scholar 

  • Ruiz-Sanchez E, Sosa V (2010) Delimiting species boundaries within the Neotropical bamboo Otatea (Poaceae: Bambusoideae) using molecular, morphological and ecological data. Mol Phylogenet Evol 54(2):344–356. doi:10.1016/j.ympev.2009.10.035

    CAS  PubMed  Google Scholar 

  • Ruprecht U, Lumbsch HT, Brunauer G, Green TGA, Türk R (2010) Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters. Antarctic Sci 22 (Special Issue 06):727–741. doi:10.1017/S0954102010000477

  • Salicini I, Ibáñez C, Juste J (2011) Multilocus phylogeny and species delimitation within the Natterer’s bat species complex in the Western Palearctic. Mol Phylogenet Evol 61(3):888–898. doi:10.1016/j.ympev.2011.08.010

    CAS  PubMed  Google Scholar 

  • Satler JD, Carstens BC, Hedin M (2013) Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Syst Biol 62(6):805–823. doi:10.1093/sysbio/syt041

    PubMed  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55(1):421–438. doi:10.1146/annurev-ento-112408-085432

    CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109(16):6241–6246. doi:10.1073/pnas.1117018109

  • Sérusiaux E, Villarreal AJC, Wheeler T, Goffinet B (2011) Recent origin, active speciation and dispersal for the lichen genus Nephroma (Peltigerales) in Macaronesia. J Biogeogr 38(6):1138–1151. doi:10.1111/j.1365-2699.2010.02469.x

    Google Scholar 

  • Shrestha G, Peterson SL, St. Clair LL (2012) Predicting the distribution of the air pollution sensitive lichen species Usnea hirta. The Lichenologist 44(04):511–521. doi:10.1017/S0024282912000060

  • Simpson GG (1951) The species concept. Evolution 5:285–298

    Google Scholar 

  • Sites JW, Marshall JC (2003) Delimiting species: a renaissance issue in systematic biology. Trends Ecol Evol 18:462–470. doi:10.1016/S0169-5347(03)00184-8

    Google Scholar 

  • Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35(1):199–227. doi:10.1146/annurev.ecolsys.35.112202.130128

    Google Scholar 

  • Šlapeta J, López-García P, Moreira D (2006) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23(1):23–29. doi:10.1093/molbev/msj001

    PubMed  Google Scholar 

  • Spribille T, Klug B, Mayrhofer H (2011) A phylogenetic analysis of the boreal lichen Mycoblastus sanguinarius (Mycoblastaceae, lichenized Ascomycota) reveals cryptic clades correlated with fatty acid profiles. Mol Phylogenet Evol 59(3):603–614. doi:10.1016/j.ympev.2011.03.021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stenroos SK, DePriest PT (1998) SSU rDNA phylogeny of cladoniiform lichens. Am J Bot 85(11):1548–1559

    CAS  PubMed  Google Scholar 

  • Talavera G, Dincă V, Vila R (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods Ecol Evol 4(12):1101–1110. doi:10.1111/2041-210X.12107

    Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32. doi:10.1006/fgbi.2000.1228

    CAS  PubMed  Google Scholar 

  • Tewksbury J, Anderson JGT, Bakker JD, Billo TJ, Dunwiddie PW, Groom MJ, Hampton SE, Herman SG, Levey DJ, Machnicki NJ, del Rio CM, Power ME, Rowell K, Salomon AK, Stacey L, Trombulak SC, Wheeler TA (2014) Natural history’s place in science and society. BioScience. doi:10.1093/biosci/biu032

  • Thell A, Högnabba F, Elix JA, Feuerer T, Kärnefelt I, Myllys L, Randlane T, Saag A, Stenroos S, Ahti T, Seaward MRD (2009) Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers. The Lichenologist 41(05):489–511. doi:10.1017/S0024282909990090

  • Velmala S, Myllys L, Halonen P, Goward T, Ahti T (2009) Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific. The Lichenologist 41(03):231–242. doi:10.1017/S0024282909008573

    Google Scholar 

  • Vondrák J, Říha P, Arup U, Søchting U (2009) The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenology. The Lichenologist 41(06):571–604. doi:10.1017/S0024282909008317

    Google Scholar 

  • Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, Sivasundar A, Seehausen O (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol 22(3):787–798. doi:10.1111/mec.12023

    CAS  PubMed  Google Scholar 

  • Wang Y-Y, Liu B, Zhang X-Y, Zhou Q-M, Zhang T, Li H, Yu Y-F, Zhang X-L, Hao X-Y, Wang M, Wang L, Wei J-C (2014) Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genom 15(1):34. doi:10.1186/1471-2164-15-34

    Google Scholar 

  • Wedin M, Westberg M, Crewe AT, Tehler A, Purvis OW (2009) Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota, Fungi) complex. Cladistics 25(2):161–172. doi:10.1111/j.1096-0031.2009.00240.x

    Google Scholar 

  • Weisrock DW, Rasoloarison RM, Fiorentino I, Ralison JM, Goodman SM, Kappeler PM, Yoder AD (2010) Delimiting species without nuclear monophyly in Madagascar’s mouse lemurs. PLoS ONE 5(3):e9883. doi:10.1371/journal.pone.0009883

    PubMed Central  PubMed  Google Scholar 

  • Werth S, Cornejo C, Scheidegger C (2013) Characterization of microsatellite loci in the lichen fungus Lobaria pulmonaria (Lobariaceae). Appl Plant Sci 1(2):1200290. doi:10.3732/apps.1200290

    Google Scholar 

  • Westberg M, Arup U, Kärnefelt I (2007) Phylogenetic studies in the Candelariaceae (lichenized Ascomycota) based on nuclear ITS DNA sequence data. Mycol Res 111(11):1277–1284. doi:10.1017/S0953756204002102

    CAS  PubMed  Google Scholar 

  • Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist?—A case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zoo 4(1):8. doi:10.1186/1742-9994-4-8

    Google Scholar 

  • Wiens JJ (1998) Combining data sets with different phylogenetic histories. Syst Biol 4:568–581. doi:10.1080/106351598260581

  • Wiens JJ, Penkrot T (2002) Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol 51:69–91. doi:10.1080/106351502753475880

    PubMed  Google Scholar 

  • Wiens JJ, Servedio MR (2000) Species delimitation in systematics: inferring diagnostic differences between species. Proc R Soc Lond B Biol Sci 267(1444):631–636. doi:10.1098/rspb.2000.1049

    CAS  Google Scholar 

  • Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54(5):844–851. doi:10.1080/10635150500354878

    PubMed  Google Scholar 

  • Wirtz N, Printzen C, Lumbsch HT (2012) Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Organ Divers Evol 12(1):17–37. doi:10.1007/s13127-011-0066-y

    Google Scholar 

  • Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci 107(20):9264–9269. doi:10.1073/pnas.0913022107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeates DK, Seago A, Nelson L, Cameron SL, Joseph LEO, Trueman JWH (2011) Integrative taxonomy, or iterative taxonomy? Syst Entomol 36(2):209–217. doi:10.1111/j.1365-3113.2010.00558.x

    Google Scholar 

  • Zhang C, Zhang D-X, Zhu T, Yang Z (2011) Evaluation of a Bayesian coalescent method of species delimitation. Syst Biol 60(6):747–761. doi:10.1093/sysbio/syr071

    PubMed  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29(22):2869–2876. doi:10.1093/bioinformatics/btt499

Download references

Acknowledgments

We are indebted to various colleagues for valuable, thought-provoking discussion, notably Matthew Nelsen (University of Chicago), Ana Crespo (Universidad Complutense de Madrid), Pradeep Divakar (Universidad Complutense de Madrid), Beckett Sterner (The Field Museum), and Joyce Havstad (The Field Museum). We also thank anonymous reviewers who provided valuable comments that improved this chapter. Support by the US National Science Foundation is gratefully acknowledged (“Hidden diversity in parmelioid lichens,” DEB-0949147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Leavitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Leavitt, S.D., Moreau, C.S., Thorsten Lumbsch, H. (2015). The Dynamic Discipline of Species Delimitation: Progress Toward Effectively Recognizing Species Boundaries in Natural Populations. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2235-4_2

Download citation

Publish with us

Policies and ethics