Skip to main content

Micromorphomics: A Morphological Dissection to Unveil Environmental Stress

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Earth environment with all its good and bad effects is maintained and disturbed by the interplay between plants and animals. Plants could be silent indicators of healthy or stressful environment in and around themselves through varied morphological manifestations. Environmental stress may be abiotic or biotic. Morphological manifestations of plant’s response to any kind of stress may be organ specific or integrative. Among different angiospermic plant organs, leaf (source organ) and fruit (sink organ) micromorphological responses to stress are found to be more dramatic and critical. Along with these, other plant organs like stem, root, flower, etc. also manifest micromorphological changes in response to various environmental stresses. They are certainly being the direct outcome of internal mechanistic alterations of plants to combat stressful environment. Understanding of this organ architecture is the first and foremost step towards unveiling the underlying controlling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ager FJ, Ynsa MD, Dominguez-Solis JR, Lopez-Martin MC, Gotor C, Romero LC (2003) Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nucl Inst Methods Phys Res B 210:401–406

    CAS  Google Scholar 

  • Ahmed FE, Hall AE, DeMason DA (1992) Heat injury during floral development in cowpea (Vigna unguiculata). Am J Bot 79:784–791

    Google Scholar 

  • Akhtar J, Gorham J, Qureshi RH (1998) Does tolerance of wheat to salinity and hypoxia correlate with root dehydrogenase activities or aerenchyma formation? Plant Soil 201:275–284

    CAS  Google Scholar 

  • Andrade LR, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125

    CAS  PubMed  Google Scholar 

  • André O, Vollenweider P, Günthardt-George MS (2006) Foliage response to heavy metal contamination in Sycamore Maple (Acer pseudoplatanus L.). For Snow Landsc Res 80(3):275–288

    Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol 15:411–415

    CAS  PubMed  Google Scholar 

  • Arena C, Vitale L, De Santo VA (2008) Paraheliotropism in Robinia pseudoacacia L.: an efficient strategy to optimise photosynthetic performance under natural environmental conditions. Plant Biol 10:194–201

    CAS  PubMed  Google Scholar 

  • Aronne G, De Micco V (2001) Seasonal dimorphism in the Mediterranean Cistus incanus L. subsp. incanus. Ann Bot 87(6):789–794

    Google Scholar 

  • Ashraf M, Tufail M (1995) Variation in salinity tolerance in sunflower (Heliunthus annuus L.). J Agron Crop Sci 174:351–362

    CAS  Google Scholar 

  • Azmat R, Haider S, Nasreen H, Aziz F, Riaz M (2009) A viable alternative mechanism in adapting the plants to heavy metal environment. Pak J Bot 416:2729–2738

    Google Scholar 

  • Balk J, Leaver CJ (2001) The PETI-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barcelo J, Vazquez MD, Poschenrieder C (1988) Cadmium induced structural and ultrastructural changes in the vascular system of bush bean stems. Bot Acta 101:254–261

    CAS  Google Scholar 

  • Bondada BR, Keller M (2012) Not all shrivels are created equal – morpho-anatomical AND compositional characteristics differ AMONG different shrivel types that develop during ripening OF grape (Vitis VINIFERA L.) berries. Am J Plant Sci 3(7):879–898

    Google Scholar 

  • Bussotti F, Bottaci A, Bartolesi A, Grossoni P, Tani C (1995) Morpho-anatomical alterations in leaves collected from beech trees (Fagus sylvatica L.) in conditions of natural water stress. Environ Exp Bot 35(2):201–213

    Google Scholar 

  • Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkeley

    Google Scholar 

  • Carlsson J, Leino M, Sohlberg J, Sundström JF, Glimelius K (2008) Mitochondrial regulation of flower development. Mitochondrion 8:74–86

    CAS  PubMed  Google Scholar 

  • Çavuşoğlu K, Kiliç S, Kabar K (2007) Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines. Acta Physiol Plant 29:551–557

    Google Scholar 

  • Çavuşoğlu K, Kiliç S, Kabar K (2008) Effects of some plant growth regulators on leaf anatomy of radish seedlings grown under saline conditions. J Appl Biol Sci 2:47–50

    Google Scholar 

  • Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crop Res 90(2–3):323–334

    Google Scholar 

  • Conley CA, Hanson MR (1994) Tissue specific protein expression in plant mitochondria. Plant Cell 6:85–91

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cynthla JMK, Bong YY, Seabrook JEA (1990) Stigma of Solanum tuberosum cv shepody: morphology, ultrastructure, and secretion. Am J Bot 77:1111–1124

    Google Scholar 

  • De Micco V, Aronne G (2007) Anatomical features, monomer lignin composition and accumulation of phenolics in one-year-old branches of the Mediterranean Cistus ladanifer L. Bot J Linn Soc 155:361–371

    Google Scholar 

  • De Micco V, Aronne G (2012) Morpho-anatomical traits for plant adaptation to drought. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin/Heidelberg

    Google Scholar 

  • Devasirvatham V, Gaur PM, Mallikarjuna N, Tokachichu RN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39(12):1009–1018

    Google Scholar 

  • Dixon M, Le Thiec D, Garrec JP (1997) An investigation into the effects of ozone and drought, applied singly and in combination on the quantity and quality of the epicuticular wax of Norway spruce. Plant Physiol Biochem 35(6):447–454

    CAS  Google Scholar 

  • Djibril S, Mohamed OK, Diaga D, Diégane D, Abaye BF, Maurice S, Alain B (2005) Growth and development of date palm (Phoenix dactylifera L.) seedlings under drought and salinity stresses. Afr J Biotechnol 4:968–972

    Google Scholar 

  • Dumas C, Knox RB, Gaude T (1984) Pollen-pistil recognition: new concepts from electron microscopy and cytochemistry. Int Rev Cytol 90:239–272

    CAS  Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Google Scholar 

  • Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M (2009) High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol 50:1911–1922

    CAS  PubMed  Google Scholar 

  • Evans LS, Gmur NF, Kelsch JJ (1977) Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain. Am J Bot 64:903–913

    Google Scholar 

  • Fahn A (1964) Some anatomical adaptations in desert plants. Phytomorphology 14:93–102

    Google Scholar 

  • Field TS, Zwieniecki MA, Donoghue MJ, Holbrook NM (1998) Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. Proc Natl Acad Sci U S A 95:14256–14259

    Google Scholar 

  • Fornasiero RB (2001) Phytotoxic effects of fluorides. Plant Sci 161(5):979–985

    CAS  Google Scholar 

  • Gan Y, Zhou L, Shen ZJ, Shen ZX, Zhang YQ, Wang GX (2010) Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Bot Stud 51:325–336

    Google Scholar 

  • Gielwanowska I, Szczuka E, Bednara J, Górecki R (2005) Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann Bot 96(6):1109–1119

    PubMed Central  PubMed  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    CAS  PubMed  Google Scholar 

  • Gomes MP, Marques TCLLDM, Nogueira MDG et al (2011) Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Sci Agric 68(5):566–573

    CAS  Google Scholar 

  • Gostin IN (2009) Air pollution effects on the leaf structure of some Fabaceae species. Not Bot Horti Agrobot Cluj-Napoca 37(2):57–63

    Google Scholar 

  • Hameed M, Ashraf M, Nargis N (2009) Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322:229–238

    CAS  Google Scholar 

  • Han FX, Maruthi Sridhar BB, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea L. Czern. New Phytol 162:489–499

    CAS  Google Scholar 

  • Heslop-Harrison Y (1981) Stigma characteristics and angiosperm I, taxonomy. Nor J Bot 1:401–420

    Google Scholar 

  • Hollenbach B, Schreiber L, Hartung W, Dietz K-J (1997) Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly. Planta 203:9–19

    CAS  PubMed  Google Scholar 

  • Hoover WS (1986) Stomata and stomatal clusters in Begonia: ecological response in two Mexican species. Biotropica 18:16–21

    Google Scholar 

  • Hu Y, Fromm J, Schmidhalter U (2005) Effect of salinity on tissue architecture in expanding wheat leaves. Planta 220:838–848

    CAS  PubMed  Google Scholar 

  • Huang J, Redmann RE (1995) Responses of growth, morphology, and anatomy to salinity and calcium supply in cultivated and wild barley. Can J Bot 73:1859–1866

    CAS  Google Scholar 

  • Hwang YH, Chen SC (1995) Anatomical responses in Kandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl. Bot Bull Acad 36:181–188

    CAS  Google Scholar 

  • Jackson RD (1986) Remote sensing of biotic and abiotic plant stress. Annu Rev Phytopathol 24:265–287

    Google Scholar 

  • Jaleel CA, Gopi R, Azooz MM, Panneerselvam R (2009a) Leaf anatomical modifications in Catharanthus roseus as affected by plant growth promoters and retardants. Glob J Mol Sci 4(1):01–05

    Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Jasim Al-Juburi H, Somasundaram R, Panneerselvam R (2009b) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jenks MA, Andersen L, Teusink RS, Williams MH (2001) Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Physiol Plant 112:62–70

    CAS  PubMed  Google Scholar 

  • Kader AA (2003) Physiology of CA treated produce. Acta Hort 600:349–354

    Google Scholar 

  • Karimi E, Abdolzadeh A, Sadeghipour HR (2009) Increasing salt tolerance in Olive. Olea europaea L. plants by supplemental potassium nutrition involves changes in ion accumulation and anatomical attributes. Int J Plant Prod 3(4):49–60

    Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832

    CAS  Google Scholar 

  • Kerstiens G (2006) Water transport in plant cuticles: an update. J Exp Bot 57:2493–2499

    CAS  PubMed  Google Scholar 

  • Khudsar T, Uzzafar M, Iqbal M (2001) Cadmium induced changes in leaf epidermis, photosynthetic rate and pigment concentrations in Cajanus cajan. Biol Plant 44(1):59–64

    CAS  Google Scholar 

  • Kilili AW, Behboudian MH, Mills TM (1996) Postharvest performance of ‘Braeburn’ apples in relation to withholding of irrigation at different stages of the growing season. J Hortic Sci 71(5):693–701

    Google Scholar 

  • Kinet JM, Peet MM (1997) Tomato. In: Wien HC (ed) The physiology of vegetable crops. Commonwealth Agricultural Bureau (CAB) International, Wallingford

    Google Scholar 

  • Larkin JC, Marks MD, Nadeau J, Sack F (1997) Epidermal cell fate and patterning in leaves. Plant Cell 9:1109–1111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723

    PubMed  Google Scholar 

  • Liu HY, Liao BH, Lu SQ (2004a) Toxicity of surfactant, acid rain and Cd2+ combined pollution to the nucleus of Vicia faba root tip cells. Chin J Appl Ecol 15(3):493–496

    CAS  Google Scholar 

  • Liu HY, Liao BH, Zhou PH, Yu PZ (2004b) Toxicity of linear alkylbenzene sulfonate and alkylethoxylate to aquatic plants. Bull Environ Contam Toxicol 72(4):866–872

    CAS  PubMed  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:004000

    Google Scholar 

  • Lopez G, Larrigaudière C, Girona J, Behboudian MH, Marsal J (2011) Fruit thinning in ‘conference’ pear grown under deficit irrigation: implications for fruit quality at harvest and after cold storage. Sci Hortic 129(1):64–70

    Google Scholar 

  • Martin D, Vollenweider P, Gunthardt-Goerg MS (2006) Bioindication of heavy metal contamination in vegetable gardens. For Snow Landsc Res 80(2):169–180

    Google Scholar 

  • Martinez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Agron 26:30–38

    Google Scholar 

  • Maruthi Sridhar BB, Diehl SV, Han FX, Monts DL, Su Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141

    CAS  Google Scholar 

  • Matsuhira H, Shinada H, Yui-Kurino R, Hamato N, Umeda M, Mikami T, Kubo T (2007) An anther-specific lipid transfer protein gene in sugar beet: its expression is strongly reduced in male-sterile plants with Owen cytoplasm. Physiol Plant 129:407–414

    CAS  Google Scholar 

  • Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89:683–687

    PubMed Central  PubMed  Google Scholar 

  • Matsui T, Omasa K, Horie T (1999) Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann Bot 84:501–506

    Google Scholar 

  • Matsui T, Omasa K, Horie T (2000) High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci 3:430–434

    Google Scholar 

  • Melo HC, Castro EM, Soares AM, Melo LA, Alves JD (2007) Anatomical and physiological alterations in Setaria anceps stapf ex Massey and Paspalum paniculatum under water deficit conditions. Hoehnea 34:145–153 (in Portuguese with abstract in English)

    Google Scholar 

  • Miller SA, Smith GS, Boldingh HL, Johansson A (1998) Effects of water stress on fruit quality attributes of kiwifruit. Ann Bot 81:73–81

    Google Scholar 

  • Monneveux P, Sánchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46:180–191

    Google Scholar 

  • Mostajeran A, Rahimi-Eichi V (2008) Drought stress effects on root anatomical characteristics of rice cultivars (Oryza sativa L.). Pak J Biol Sci 11:2173–2183

    CAS  PubMed  Google Scholar 

  • Murakeozy EP, Nagy Z, Duhaze C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401

    CAS  PubMed  Google Scholar 

  • Nam NH, Chauhan YS, Johansen C (2001) Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J Agric Sci 136:179–189

    Google Scholar 

  • Naor A, Naschitz S, Peres M, Gal Y (2008) Responses of apple fruit size to tree water status and crop load. Tree Physiol 28:1255–1261

    CAS  PubMed  Google Scholar 

  • Nawaz T, Hameed M, Ashraf M, Al- Qurainy F, Ahmad MSA, Younis A, Hayat M (2011) Ecological significance of diversity in leaf tissue architecture of some species/cultivars of the genus Rosa L. Pak J Bot 432:873–883

    Google Scholar 

  • Nishiyama I (1976) Male sterility caused by cooling treatment at the young microspore stage in rice plants. XII. Classification of tapetal hypertrophy on the basis of ultrastructure. Proc Crop Sci Soc Jpn 45:254–262

    Google Scholar 

  • Noman A, Hameed M, Ali Q, Aqeel M (2012) Foliar tissue architectural diversity among three species of genus Hibiscus for better adaptability under industrial environment. Int J Environ Sci 2(4):2212–2222

    Google Scholar 

  • North GB, Nobel PS (1992) Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120:9–19

    Google Scholar 

  • North GB, Nobel PS (1995) Hydraulic conductivity of concentric root tissues of Agave deserti Engelm. Under wet and drying conditions. New Phytol 130:47–57

    Google Scholar 

  • Ola H, Elbar A, Reham FE, Eisa SS, Habib SA (2012) Morpho-anatomical changes in salt stressed Kallar grass (Leptochloa fusca L. Kunth). Res J Agric Biol Sci 8(2):158–166

    Google Scholar 

  • Olmos E, Kiddle G, Pellny TK, Kumar S, Foyer CH (2006) Modulation of plant morphology, root architecture, and cell structure by low vitamin C in Arabidopsis thaliana. J Exp Bot 57(8):1645–1655

    CAS  PubMed  Google Scholar 

  • Ozores-Hampton M, McAvoy G (2010) What causes blossom drop in tomatoes? Tomato Mag 14(4):4–5

    Google Scholar 

  • Pal A, Kulshreshtha K, Ahmed KJ, Behl HM (2002) Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? Flora 197(1):47–55

    Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53(3):299–314

    Google Scholar 

  • Peet MM, Sato S, Gardner RG (1998) Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ 21:225–231

    Google Scholar 

  • Peña-Valdivia CB, Sánchez-Urdaneta AB, Meza Rangel J, Juárez Muñoz J, García-Nava R, Celis Velázquez R (2010) Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L.). Biol Res 43:417–427

    PubMed  Google Scholar 

  • Prasad TK (1996) Mechanism of chilling induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026

    CAS  Google Scholar 

  • Pressman E, Peet MM, Pharr DM (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann Bot 90:631–636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Probst A, Liu H, Fanjul M, Liao B, Hollande E (2009) Response of Vicia faba L. to metal toxicity on mine tailing substrate: Geochemical and morphological changes in leaf and root. Environ Exp Bot 66:297–308

    CAS  Google Scholar 

  • Rani V, Ansari MW, Shukla A et al (2013) Fused lobed anther and hooked stigma affect pollination, fertilization and fruit set in mango: A scanning electron microscopy study. Plant Signal Behav 8(3)

    Google Scholar 

  • Reader RJ, Jalili A, Grime JP, Spencer RE, Matthews NN (1993) A comparative-study of plasticity in seedling rooting depth in drying soil. J Ecol 81:543–550

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Reinhardt DH, Rost TL (1995) Developmental changes of cotton root primary tissues induced by salinity. Int J Plant Sci 156:505–513

    Google Scholar 

  • Reinoso H, Sosa L, Ramírez L (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628

    Google Scholar 

  • Rennenberg H, Herschbach C, Polle A (1996) Consequences of air pollution on shoot-root interactions. J Plant Physiol 148:269–301

    Google Scholar 

  • Riederer M, Müller C (eds) (2005) Biology of the plant cuticle. Blackwell, Oxford

    Google Scholar 

  • Riederer M, Schreiber L (2001) Effects of environmental factors on the water permeability of plant cuticles. J Exp Bot 52:2023–2033

    CAS  PubMed  Google Scholar 

  • Robards AWV, Clarkson DT, Sanderson J (1979) Structure and permeability of the epidermal/hypodermal layers of the sand sedge (Carex arenaria L.). Protoplasma 101:331–347

    CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM (2009) Cellular responses of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    PubMed Central  PubMed  Google Scholar 

  • Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol 114:519–527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sahi SV, Sharma NC (2005) Phytoremediation of lead. In: Shtangeeva I (ed) Trace and ultratrace elements in plants and soils, series advances in ecological researches. Witpress, Southampton/Boston

    Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants – genes and environmental stresses with special reference to high temperature injury. Int J Plant Dev Biol 2:42–51

    Google Scholar 

  • Salem MA, Kakani VG, Koti S, Reddy KR (2007) Pollen-based screening of soybean genotypes for high temperatures. Crop Sci 47:219–231

    Google Scholar 

  • Sant’Anna-Santos BF, da Silva LC, Azevedo AA, Aguiar R (2006) Effects of simulated acid rain on leaf anatomy and micromorphology of Genipa americana L. (Rubiaceae). Braz Arch Biol Technol 49(2):313–321

    Google Scholar 

  • Sarret G, Vangronsveld J, Manceau A, Musso M, Haen J, Menthonnex JJ, Hazemann JL (2001) Accumulation form of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ Sci Technol 35:2854–2859

    CAS  PubMed  Google Scholar 

  • Schlüter U, Muschak M, Berger D, Altmann T (2003) Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes. J Exp Bot 54:867–874

    PubMed  Google Scholar 

  • Shah F, Huang J, Cui K, Nei L, Shah T, Chen C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149:545–556

    CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 33:215–225

    Google Scholar 

  • Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    CAS  PubMed  Google Scholar 

  • Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    CAS  Google Scholar 

  • Srivastava LM (2001) Plant growth and development. Academic, San Diego/London

    Google Scholar 

  • Strogonov BP (1962) Physiological basis of salt tolerance of plants. Israel program for Scientific Translations, Jerusalem (translated from Russian)

    Google Scholar 

  • Tahir MHN, Imran M, Hussain MK (2002) Evaluation of sunflower (Helianthus annuus L.) inbred lines for drought tolerance. Int J Agric Biol 3:398–400

    Google Scholar 

  • Talukdar D (2012) Modulation of plant growth and leaf biochemical parameters in grass pea (Lathyrus sativus L) and fenugreek (Trigonella foenum-graecum L.) exposed to NaCl treatments. Indian J Fundam Appl Life Sci 2(3):20–28

    Google Scholar 

  • Talukdar D (2013a) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19(1):69–79

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talukdar T (2013b) Fruit microcharacters as potential biomarkers of arsenic toxicity in a medicinal herb, Wedelia Chinensis merrill of compositae. Int J Agric Sci Res 3(1):143–150

    Google Scholar 

  • Talukdar T (2013c) Cypselas diversity of the tribe Cardueae (Asteraceae)-an overview. Lap Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  • Tang M, Hu YX, Lin JX, Jin XB (2002) Developmental mechanism and distribution pattern of stomatal clusters in Begonia peltatifolia. Acta Bot Sin 44:384–390

    Google Scholar 

  • Torbaghan ME, Torbaghan ME, Ahmadi M (2011) The effect of salt stress on flower yield and growth parameters of saffron (Crocus sativus L.) in greenhouse condition. Int Res J Agric Sci Soil Sci 1(10):421–427

    Google Scholar 

  • Vazquez MD, Poschenrieder CH, Barcelo J (1992) Ultrastructural effects and localization of low cadmium concentrations in bean roots. New Phytol 120:215–226

    CAS  Google Scholar 

  • Villasante CO, Rellán-Álvarez R, Campo FFD, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56(418):2239–2251

    Google Scholar 

  • Vitória AP, Da Cunha M, Azevedo RA (2006) Ultrastructural changes of radish leaf exposed to cadmium. Environ Exp Bot 58:47–52

    Google Scholar 

  • Vollenweider P, Ottiger M, Günthardt-George MS (2003) Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environ Pollut 124:101–118

    CAS  PubMed  Google Scholar 

  • Vollenweider P, Cosio C, Günthardt-George MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Part II Microlocalization and cellular effects of cadmium. Environ Exp Bot 58:25–40

    CAS  Google Scholar 

  • Von V, Zabka V, Wuppertal A (2007) The plasticity of barley (Hordeum vulgare) leaf wax characteristics and their effects on early events in the powdery mildew fungus (Blumeria graminis f.sp. hordei): interactive adaptations at the physiological and the molecular level. Dissertation, University of Würzburg

    Google Scholar 

  • Walsh GE (1990) Anatomy of the seed and seedling of Spartina alterniflora Lois. (Poaceae). Aquat Bot 38:177–193

    Google Scholar 

  • Wang YY (2006) Occurrence and characterisation of superoxide dismutases in the female reproductive structures of Petunia. Dissertation, University of Canterbury

    Google Scholar 

  • Webber M, Barnett J, Finlayson B, Wang M (2006) Pricing China’s irrigation water. Working Paper, School of Anthropology, Geography and Environmental Studies, The University of Melbourne, Victoria, Australia

    Google Scholar 

  • Wignarajahk D, Jenning H, Handley JF (1975) The effect of salinity on growth of Phaseolus vulgaris L. 1. Anatomical changes in the first trifoliate leaf. Ann Bot 39:1029–1038

    Google Scholar 

  • Wild A, Schmitt V (1995) Diagnosis of damage to Norway spruce (Picea abies) through biochemical criteria. Physiol Plant 93:375–382

    CAS  Google Scholar 

  • Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59:3317–3325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yujing Z, Yong Z, Zizhi H (2000) Studies on microscopic structure of Puccinellia tenuiflora stem under salinity stress. Grassl China 5:6–9

    Google Scholar 

  • Zhao XZ, Yang YS, Shen ZX (2006) Stomatal clustering in Cinnamomum camphora. S Afr J Bot 72:565–569

    Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zobel A, Nighswander JE (1991) Accumulation of phenolic compounds in the necrotic areas of Austrian and Red Pine needles after spraying with sulphuric acid: a possible bioindicator of air pollution. New Phytol 117:565–574

    CAS  Google Scholar 

  • Zubko MK, Zubko EI, Ruban AV, Adler K, Mock HP, Misera S, Gleba YY, Grimm B (2001) Extensive developmental and metabolic alterations in cybrids Nicotiana tabacum (+Hyoscyamus niger) are caused by complex nucleo-cytoplasmic incompatibility. Plant J 25:627–639

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulika Talukdar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Talukdar, T. (2015). Micromorphomics: A Morphological Dissection to Unveil Environmental Stress. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_21

Download citation

Publish with us

Policies and ethics