Skip to main content

Dynamics of Plant Nutrients, Utilization and Uptake, and Soil Microbial Community in Crops Under Ambient and Elevated Carbon Dioxide

  • Chapter
  • First Online:
Nutrient Use Efficiency: from Basics to Advances

Abstract

In natural settings such as under field conditions, the plant-available soil nutrients in conjunction with other environmental factors such as solar radiation, temperature, precipitation, and atmospheric carbon dioxide (CO2) concentration determine crop adaptation and productivity. Therefore, crop success depends on the intricate balance among these multiple environmental factors. Plant nutrients are the major constraint for crop productivity worldwide because it must be supplied externally to achieve maximum production. The depleting natural resources of mineral nutrients in addition to the global changes in climate caused by the emission of green house gases including CO2 are among the major concerns of crop production and food security. Moreover, crop demand for nutrients has been increased due to use of modern cultivars and improved irrigation facilities and is expected to be even higher under elevated CO2. Soil microorganisms including arbuscular mycorrhizal (AM) fungi partly enhance crop nutrient availability and acquisition in many soil types through symbiotic or non-symbiotic relationships. Atmospheric CO2 concentration is expected to be doubled from its current level of 400 μmol mol−1 at the end of this twenty-first century. Elevated CO2 increases growth and yield of many crops upon which humans depend for food and clothing. However, plant nutrient availability exerts major control on the degree of stimulation by elevated CO2 on crop growth and yield. One of the objectives of this chapter is to provide a summary of crop responses to plant nutrients mainly nitrogen, phosphorus, and potassium and underline in part the dynamics of soil microorganisms including AM fungi in the nutrient accessibility under current and elevated CO2 concentrations. Regardless of the CO2 levels, nutrient deficiencies negatively affect crop photosynthesis, growth and biomass production, yield, and yield quality. Elevated CO2 tends to compensate, at least partly, for the losses caused by nutrient deficiency especially by increasing plant growth due to improved efficiency of nutrient acquisition and utilization. However, crop species, deficiency of the specific nutrient, and its severity greatly influence the nutrient efficiency in crop plants. The critical tissue nutrient concentration required to achieve 90 % of maximum productivity of some plant nutrients is likely to be higher at elevated CO2. Another objective of this chapter is to discuss the influence of crop species, soil nutrient status, and elevated CO2 on the dynamics of nutrient uptake and utilization efficiency and resultant tissue nutrient concentration. Future research methods utilizing the combined effect of plant nutrient status and elevated CO2 on crops will improve our understanding of the complex relationships among various plant processes leading to efficient use of nutrient under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahanager MA, Hashem A, Abd-Allah EF, Ahmad P (2014) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, London

    Google Scholar 

  • Ahmed FE, Hall AE, Madore MA (1993) Interactive effects of high temperature and elevated carbon dioxide concentration on cowpea (Vigna unguiculata (L.) Walp.). Plant Cell Environ 16:835–842

    Article  CAS  Google Scholar 

  • Alberton O, Kuyper TW, Gorissen A (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytol 167:859–868

    Article  CAS  PubMed  Google Scholar 

  • Allen MF, Klironomos JN, Treseder KK, Walter OC (2005) Responses of soil biota to elevated CO2 in a chaparral ecosystem. Ecol Appl 15:1701–1711

    Article  Google Scholar 

  • Almeida JF, Hartwig UA, Frehner M, Nösberger J, Lüscher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297

    CAS  PubMed  Google Scholar 

  • Barrett DJ, Gifford RM (1995) Acclimation of photosynthesis and growth by cotton to elevated CO2: interactions with severe phosphate deficiency and restricted rooting volume. Aust J Plant Physiol 22:955–963

    Article  Google Scholar 

  • Bazzaz FA (1997) Allocation of resources in plants: state of the science and critical questions. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 1–38

    Chapter  Google Scholar 

  • Betsche T (1994) Atmospheric CO2 enrichment: kinetics of chlorophyll a fluorescence and photosynthetic CO2 uptake in individual, attached cotton leaves. Environ Exp Bot 34:75–86

    Article  Google Scholar 

  • Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903

    Article  CAS  PubMed  Google Scholar 

  • Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant. Neth J Agric Sci 10:399–408

    Google Scholar 

  • Bunn R, Lekberg Y, Zabinski C (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90:1378–1388

    Article  PubMed  Google Scholar 

  • Büscher M, Zavalloni C, de Boulois HD, Vicca S, Van den Berge J, Declerck S, Ceulemans R, Janssens IA, Nijs I (2012) Effects of arbuscular mycorrhizal fungi on grassland productivity are altered by future climate and below-ground resource availability. Environ Exp Bot 81:62–71

    Article  Google Scholar 

  • Campbell CD, Sage RF (2006) Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). Plant Cell Environ 29:844–853

    Article  CAS  PubMed  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Ecology 104:4990–4995

    CAS  Google Scholar 

  • Cassman KG, Whitney AS, Fox RL (1981) Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition. Agron J 73:17–22

    Article  CAS  Google Scholar 

  • Charest C, Dalpé Y, Brown A (1993) The effect of vesicular–arbuscular mycorrhizae and chilling on two hybrids of Zea mays L. Mycorrhiza 4:89–92

    Article  Google Scholar 

  • Compant S, van der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant- microorganism interactions. FEMS Microbiol Ecol 73:197–214

    CAS  PubMed  Google Scholar 

  • Conner T, Paschal EH, Barbero A, Johnson E (2004) The challenges and potential for future agronomic traits in soybeans. AgBioforum 7:47–50

    Google Scholar 

  • Conroy J (1992) Influence of elevated atmospheric CO2 concentrations on plant nutrition. Aust J Bot 40:445–456

    CAS  Google Scholar 

  • Conroy JP, Milham PJ, Reed ML, Barlow EW (1990) Increases in phosphorus requirements for CO2-enriched pine species. Plant Physiol 92:977–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Cure JD, Rufty TW, Israel DW (1988) Phosphorus stress effects on growth and seed yield responses of nonnodulated soybean to elevated carbon dioxide. Agron J 80:897–902

    Article  CAS  Google Scholar 

  • Deng Y, He Z, Xu M, Qui Y, Van Nostrand JD, Wu L, Roe BA, Wiley G, Hobbie SE, Reich PB, Zhou J (2012) Elevated carbon dioxide alters the structure of soil microbial communities. Appl Environ Microbiol 78:2991–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drigo B, Kowalchuk GA, Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Drigo B, van Veen JA, Kowalchuk GA (2009) Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2. ISME J 3:1204–1217

    Article  CAS  PubMed  Google Scholar 

  • Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HTS, van Veen J (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Change Biol 19:621–636

    Article  Google Scholar 

  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  CAS  PubMed  Google Scholar 

  • Fleisher DH, Wang Q, Timlin DJ, Chun JA, Reddy VR (2012) Response of potato gas exchange and productivity to phosphorus deficiency and carbon dioxide enrichment. Crop Sci 52:1803–1815

    Article  CAS  Google Scholar 

  • Fleisher DH, Wang Q, Timlin DJ, Chun JA, Reddy VR (2013) Effect of carbon dioxide and phosphorus supply on potato dry matter allocation and canopy morphology. J Plant Nutr 36:566–586

    Article  CAS  Google Scholar 

  • Formánek P, Rejšek K, Vranová V (2014) Effect of elevated CO2, O3, and UV radiation on soils. Sci World J 2014:8

    Article  Google Scholar 

  • Freeman C, Kim SY, Lee SH, Kang H (2004) Effects of elevated atmospheric CO2 concentrations on soil microorganisms. J Microbiol 42:267–277

    CAS  PubMed  Google Scholar 

  • Gifford R, Barrett D, Lutze J (2000) The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues. Plant Soil 224:1–14

    Article  CAS  Google Scholar 

  • Güsewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Hanway JJ, Weber CR (1971) Accumulation of N, P, and K by soybean (Glycine max (L.) Merrill) plants. Agron J 63:406–408

    Article  CAS  Google Scholar 

  • He Z, Xiong J, Kent AD, Deng Y, Xue K, Wang G, Wu L, Van Nostrand JD, Zhou J (2013) Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro- ecosystem. ISME J 8:714–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In Solomon S et al (eds). Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Israel DW, Rufty TW (1988) Influence of phosphorus nutrition on phosporus and nitrogen utilization effeciencies and associated physiological responses in soybean. Crop Sci 28:954–960

    Article  Google Scholar 

  • Israel DW, Rufty TW, Cure JD (1990) Nitrogen and phosphorus nutritional interactions in a CO2 enriched environment. J Plant Nutr 13:1419–1433

    Article  CAS  Google Scholar 

  • Kawakami EM, Oosterhuis DM, Snider JL (2013) Nitrogen assimilation and growth of cotton seedlings under NaCl salinity and in response to urea application with NBPT and DCD. J Agron Crop Sci 199:106–117

    Article  CAS  Google Scholar 

  • King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments Spruce and Peatland responses under climatic and environmental change. Glob Change Biol 10:1027–1042

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Lam SK, Chen D, Norton R, Armstrong R (2012) Does phosphorus stimulate the effect of elevated [CO2] on growth and symbiotic nitrogen fixation of grain and pasture legumes? Crop Pasture Sci 63:53–62

    Article  CAS  Google Scholar 

  • Lauer MJ, Blevins DG, Sierzputowska-Gracz H (1989) 31P-affected by phosphate nutrition-nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max l.) as affected by phosphate nutrition. Plant Physiol 89:1331–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenka NK, Lal R (2012) Soil-related constraints to the carbon dioxide fertilization effect. Crit Rev Plant Sci 31:342–357

    Article  CAS  Google Scholar 

  • Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skkiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  CAS  PubMed  Google Scholar 

  • Lewis JD, Griffin KL, Thomas RB, Strain BR (1994) Phosphorus supply affects the photosynthetic capacity of loblolly pine grown in elevated carbon dioxide. Tree Physiol 14:1229–1244

    Article  CAS  PubMed  Google Scholar 

  • Loladze I (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3:e02245

    Article  PubMed  PubMed Central  Google Scholar 

  • Longstreth DJ, Nobel PS (1980) Nutrient influences on leaf photosynthesis: effects of nitrogen, phosphorus, and potassium for Gossypium hirsutum L. Plant Physiol 65:541–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, Orlando

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85

    Article  CAS  Google Scholar 

  • Mullins GL, Burmester CH (1990) Dry matter, nitrogen, phosphorus, and potassium accumulation by four cotton varieties. Agron J 82:729–736

    Article  CAS  Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DM, Cann Issac KO, Mackie RI (2010) Response of archaeal communities in the rhizosphere of maize and soybean to elevated atmospheric CO2. PLoS One 5:e15897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LM, Buttner MP, Cruz P, Smith SD, Robleto EA (2011) Effect of elevated CO2 on rhizosphere soil microbial communities in a Mojave Desert ecosystem. J Arid Environ 75:917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norby RJ, O’Neill EG, Luxmoore RJ (1986) Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiol 82:83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson PA, Thingstrup I, Jakobsen I, Baath F (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

    Article  CAS  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Muñoz-Rueda A, Mena-Petite A (2010) Atmospheric CO2 concentration influences the contributions of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars. J Plant Physiol 167:15–22

    Article  PubMed  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2012) Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res 111:269–283

    Article  PubMed  Google Scholar 

  • Pérez-López U, Miranda-Apodaca J, Mena-Petite A, Muñoz-Rueda A (2014) Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Environ Exp Bot 99:86–99

    Article  Google Scholar 

  • Pettersson M, Baath E (2003) Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiol Ecol 45:13–21

    Article  CAS  PubMed  Google Scholar 

  • Prior SA, Rogers HH (1995) Soybean growth response to water supply and atmospheric carbon dioxide enrichment. J Plant Nutr 18:617–636

    Article  CAS  Google Scholar 

  • Prior SA, Torbert HA, Runion GB, Mullins GL, Rogers HH, Mauney JR (1998) Effects of carbon dioxide enrichment on cotton nutrient dynamics. J Plant Nutr 21:1407–1426

    Article  CAS  Google Scholar 

  • Prior SA, Rogers HH, Mullins GL, Runion GB (2003) The effects of elevated atmospheric CO2 and soil P placement on cotton root deployment. Plant Soil 255:179–187

    Article  CAS  Google Scholar 

  • Prior SA, Runion BG, Rogers HH, Torbert HA, Reeves DW (2005) Elevated atmospheric CO2 effects on biomass production and soil carbon in conventional and conservation cropping systems. Glob Chang Biol 11:657–665

    Article  Google Scholar 

  • Radin JW, Eidenbock MP (1984) Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol 75:372–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KR, Zhao DL (2005) Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Res 94:201–213

    Article  Google Scholar 

  • Riley MM, Adcock KG, Bolland MDA (1993) A small increase in the concentration of phosphorus in the sown seed increased the early growth of wheat. J Plant Nutr 16:851–864

    Article  Google Scholar 

  • Rillig MC, Field CB, Allen MF (1999) Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119:572–577

    Article  PubMed  Google Scholar 

  • Rogers GS, Payne L, Milham P, Conroy J (1993) Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO2 concentrations. Plant Soil 155–156:231–234

    Article  Google Scholar 

  • Rogers HH, Runion GB, Krupa SV (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189

    Article  CAS  PubMed  Google Scholar 

  • Rufty TW, Siddiqi MY, Glass ADM, Ruth TJ (1991) Altered 13NO3 influx in phosphorus limited plants. Plant Sci 76:43–48

    Article  CAS  Google Scholar 

  • Rufty TW, Israel DW, Volk RJ, Qiu J, Sa T (1993) Phosphate regulation of nitrate assimilation in soybean. J Exp Bot 44:879–891

    Article  CAS  Google Scholar 

  • Runion GB, Curl EA, Rogers HH, Backman PA, Rodriguez-Kabana R, Helms BE (1994) Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric For Meteorol 70:117–130

    Article  Google Scholar 

  • Sa T, Israel DW (1998) Phosphorus-deficiency effects on response of symbiotic N2 fixation and carbohydrate status in soybean to atmospheric CO2 enrichment. J Plant Nutr 21:2207–2218

    Article  CAS  Google Scholar 

  • Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Glob Change Biol 3:217–224

    Article  Google Scholar 

  • Sharma MP, Adholeya A (2004) Influence of arbuscular mycorrhizal fungi and phosphorus fertilization on the post-vitro growth and yield of micropropagated strawberry in an alfisol. Can J Bot 82(3):322–328

    Article  Google Scholar 

  • Siddiqi MY, Glass ADM (1981) Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr 4:289–302

    Article  Google Scholar 

  • Sinclair TR (1992) Mineral nutrition and plant growth response to climate change. J Exp Bot 43:1141–1146

    Article  CAS  Google Scholar 

  • Singh SK, Reddy VR (2014) Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis and nutrient efficiency of cotton. J Plant Nutr Soil Sci, in press. doi: http://dx.doi.org/10.1002/jpln.201400117

    Google Scholar 

  • Singh SK, Badgujar GB, Reddy VR, Fleisher DH, Timlin DJ (2013a) Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide. J Agron Crop Sci 199:436–448

    Article  CAS  Google Scholar 

  • Singh SK, Badgujar G, Reddy VR, Fleisher DH, Bunce JA (2013b) Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J Plant Physiol 170:801–813

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Reddy VR, Fleisher DH, Timlin DJ (2014) Growth, nutrient dynamics, and efficiency responses to carbon dioxide and phosphorus nutrition in soybean. J Plant Interact 9:838–849

    Article  CAS  Google Scholar 

  • Sionit N (1983) Response of soybean to two levels of mineral nutrition in CO2-enriched atmosphere. Crop Sci 23:329–333

    Article  CAS  Google Scholar 

  • Staddon PL (2005) Mycorrhizal fungi and environmental change: the need for a mycocentric approach. New Phytol 167:635–637

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Sadowsky MJ (2013) Influence of elevated atmospheric carbon dioxide on transcriptional responses of Bradyrhizobium japonicum in the soybean rhizoplane. Microbes Environ 28:217–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50:1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Treseder K, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2013) World population prospects: the 2012 revision, volume I: comprehensive tables. United Nations, New York

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • World-Bank (2010) World development report 2010: development and climate change. The World Bank, Washington, DC

    Google Scholar 

  • Zhou W, Hui D, Shen W (2014) Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: a laboratory incubation study. PLoS One 9:e92531

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shardendu K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Singh, S.K., Reddy, V.R., Sharma, M.P., Agnihotri, R. (2015). Dynamics of Plant Nutrients, Utilization and Uptake, and Soil Microbial Community in Crops Under Ambient and Elevated Carbon Dioxide. In: Rakshit, A., Singh, H.B., Sen, A. (eds) Nutrient Use Efficiency: from Basics to Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2169-2_24

Download citation

Publish with us

Policies and ethics