Skip to main content

Biofortification for Selecting and Developing Crop Cultivars Denser in Iron and Zinc

  • Chapter
  • First Online:

Abstract

Deficiency in minerals especially iron and zinc is a global burden chiefly in developing countries due to poverty and lack of awareness. Among current interventions such as food dietary diversification, supplementation, and fortification available for incorporating micronutrients into diet, breeding-based biofortification is the most feasible and best alternative. It involves the exploitation of genetic diversity present in the mineral-dense germplasm, land races, and wild species to create micronutrient denser lines/variety. In present genomics era, molecular breeding approaches employing molecular markers are being extensively utilized for marker-assisted selection (MAS) to develop mineral-denser lines mainly for iron and zinc. Currently, the focus of plant science is on quantitative trait locus (QTL) detection followed by MAS for the development of mineral-dense crops predominantly wheat, rice, maize, and pearl millet through biofortification. Several QTLs have been mapped for micronutrient concentration in grain/leaf using various mapping population and different marker systems. However, the success of this strategy requires long time and trials as increasing the mineral can cause yield penalty. Thus, a combinatorial approach encompassing the identification and introgression of micronutrient-rich line into locally adapted variety, detection of allergenicity/toxicity, withstanding of nutrient during postharvest processing, and acceptance of new variety by farmers and consumers for a cost-effective intervention is required for the successful development of micronutrient-rich cultivars/lines. Biofortification strategies should be further enhanced with the support from governments for the popularization of varieties through extension workers to reach to the farmers and ultimately acceptance in market.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdalla AA, El Tinay AH, Mohamed BE, Abdalla AH (1998) Proximate composition, starch, phytate and mineral contents of 10 pearl millet genotypes. Food Chem 63:243–246

    Article  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SC, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508(2):233–240

    Article  CAS  PubMed  Google Scholar 

  • Arnold JM, Bauman LF (1976) Inheritance and interrelationships among maize kernel traits and elemental contents. Crop Sci 16:439–440

    Article  CAS  Google Scholar 

  • Avendano BS (2000) Tagging high zinc content in the grain, and zinc deficiency tolerance genes in rice (Oryza sativa L.) using simple sequence repeats (SSR). Dissertation, Laguna College, Los Banos

    Google Scholar 

  • Balint AF, Kovacs G, Erdei L, Sutka J (2001) Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated species. Cereal Res Commun 29:375–382

    CAS  Google Scholar 

  • Banziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr Bull 21:397–400

    Article  Google Scholar 

  • Beckmann JS, Soller M (1986) Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica 35:111–124

    Article  Google Scholar 

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B 365(1537):61–71

    Article  Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Article  Google Scholar 

  • Biradar H, Bhargavi MV, Sasalwad R, Parama R, Hittalmani S (2007) Identification of QTL associated with silicon and Zn content in rice (Oryza sativa L.) and their role in blast disease resistance. Indian J Genet 67:105–109

    Google Scholar 

  • Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Article  CAS  Google Scholar 

  • Blair MW, Gonzalez LF, Kimani M, Butare L (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121(2):237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW et al (2011) Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biol 11:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62(2):403–411

    Article  PubMed  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification-a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S20–S32

    Article  Google Scholar 

  • Broadley MR, Hammond JP, King GJ (2008) Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol 146:1707–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buerkert A, Bationo A, Piepho HP (2001) Efficient phosphorus application strategies for increase crop production in Sub-Saharan West Africa. Field Crop Res 72:1–15

    Article  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable way. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105:1211–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cichy KA, Shana F, Kenneth LG, George LH (2005) Inheritance of seed zinc accumulation in navy bean. Crop Sci 45:864–870

    Article  CAS  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Dahiya S, Chaudhary D, Jaiwal R, Dhankher O, Singh R et al (2008) Elemental biofortification of crop plants. In: Jaiswal P, Singh R, Dhankar OP (eds) Plant membrane and vacuolar transporters. CABI International, Wallingford/Cambridge, pp 345–371

    Google Scholar 

  • Dai JL, Zhu YG, Zhang M, Huang YZ (2004) Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol Trace Elem Res 101:265–276

    Article  CAS  PubMed  Google Scholar 

  • Ding G, Yang M, Hu Y, Liao Y, Shi L, Xu L, Meng J (2010) Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann Bot 105:1221–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Duffy B (2007) Zinc and plant disease. Miner Nutr Plant Dis 35:155–175

    Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York

    Google Scholar 

  • Fehr WR (1982) Control of iron deficiency chlorosis in soybeans by plant breeding. J Plant Nutr 5:611–621

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations, FAOSTAT database (FAOSTAT, 2008). Available at http://faostat.fao.org/site/362/DesktopDefault.aspx?PageID=362

  • Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    Article  CAS  PubMed  Google Scholar 

  • Gargari BP, Mahboob S, Razavieh SV (2007) Content of phytic acid and its mole ratio to zinc in flours and breads consumed in Tabriz, Iran. Food Chem 100:1115–1119

    Article  CAS  Google Scholar 

  • Gelin JR, Forster S, Grafton KF, McClean P, Rojas-Cifuentes GA (2007) Analysis of seed-zinc and other nutrients in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci 47:1361–1366

    Article  CAS  Google Scholar 

  • Genc Y, Humphries JM, Lyons GH, Graham RD (2005) Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations. J Trace Elem Med Biol 18:319–324

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314:49–66

    Article  CAS  Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aats MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126:407–417

    Article  CAS  Google Scholar 

  • Ghandilyan A, Barboza L, Tisné S, Granier C, Reymond M, Koornneef M, Schat H, Aarts MG (2009) Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought. New Phytol 184:180–192

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani R, Wilcockson S, Koocheki A, Leifert C (2009) Soil management for sustainable crop disease control: a review. Org Farm Pest Control Remediat Soil Pollut Sustain Agric Rev 1:177–201

    Article  Google Scholar 

  • Gibson R (1994) Zinc nutrition in developing countries. Nutr Res Rev 7:151–173

    Article  CAS  PubMed  Google Scholar 

  • Glahn RP, Chen SQ, Welch RM, Gregorio GB (2002) Comparison of iron bioavailability from 15 rice genotypes. J Agric Food Chem 50(12):3586–3591

    Article  CAS  PubMed  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:1–7

    Article  CAS  Google Scholar 

  • Gorsline GW, Thomas WI, Baker DE (1964) Inheritance of P, K, Mg, Cu, B, Zn, Mn, Al and Fe concentrations by corn (Zea mays L.) leaves and grain. Crop Sci 4:207–210

    Article  CAS  Google Scholar 

  • Graham RD, Senadhira C, Beebe SE, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Article  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Article  Google Scholar 

  • Grusak MA, Cakmak I (2004) Methods to improve the crop delivery of minerals to humans and livestock. Plant Nutr Genomics 22:13

    Google Scholar 

  • Grusak MA, Cakmak I (2005) Methods to improve the crop-delivery of minerals to humans and livestock. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell, Oxford, pp 265–286

    Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  CAS  PubMed  Google Scholar 

  • Gupta AP (2005) Micronutrient status and fertilizer use scenario in India. J Trace Elem Med Biol 18(4):325–331

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Guzman-Maldonado SH, Martinez O, Acosta-Gallegos JA et al (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  CAS  Google Scholar 

  • Hulse JH, Laing EM, Pearson OE (1980) Sorghum and millets: their composition and nutritive value, International Development Research Centre (IDRC). Academic, London, p 997

    Google Scholar 

  • Hunt JR (2002) Moving toward a plant-based diet: are iron and zinc at risk? Nutr Rev 60(5 Pt 1):127–134

    Article  PubMed  Google Scholar 

  • Indian Council of Medical Research (ICMR) (2002) Nutrient requirements and recommended dietary allowances for Indians. Indian Council of Medical Research, New Delhi, p 83

    Google Scholar 

  • International Zinc Nutrition Consultative Group (IZiNCG) (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Hotz C, Brown KH (eds) Food Nutr Bull 25(Suppl 2):S91–S204

    Google Scholar 

  • Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 5:923–934

    Article  CAS  Google Scholar 

  • Jambunathan R (1980) Improvement of nutritional quality of sorghum and pearl millet. U N Univ Press Food Nutr Bull 2(1):39–53

    CAS  Google Scholar 

  • Jambunathan R, Subramanian V (1988) Grain quality and utilization in sorghum and pearl millet. In: de Wet JMJ, Preston TA (eds) Proceedings of the workshop on biotechnology for tropical crop improvement. ICRISAT, Patancheru, pp 133–139

    Google Scholar 

  • Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63(3):317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS 106:3041–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kayode APP, Linnemann AR, Hounhouigan JD (2006) Genetic and environmental impact on iron, zinc, and phytate in food sorghum grown in Benin. J Agric Food Chem 54:256–262

    Article  CAS  PubMed  Google Scholar 

  • Kennedy G, Burlingame B (2003) Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem 80:589–596

    Article  CAS  Google Scholar 

  • Khetarpaul N, Chauhan BM (1990) Improvement in HCI-extractability of minerals from pearl millet by natural fermentation. J Food Chem 37:69–75

    Article  CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Schulin S, Chaney RL, Daneshbakhsh B, Afyuni M (2010) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture a review. Agron Sustain Dev 30:83–107

    Article  CAS  Google Scholar 

  • Kumar S (2011) Development of new mapping population and marker-assisted improvement of iron and zinc grain density in pearl millet [Pennisetumglaucum (L.) R. Br]. PhD thesis, SK Rajasthan Agricultural University, Bikaner, Rajasthan, India

    Google Scholar 

  • Kumar A, Chauhan BM (1993) Effects of phytic acid on protein digestibility (in vitro) and HCI-extractability of minerals in pearl millet sprouts. Cereal Chem 70(5):504–506

    CAS  Google Scholar 

  • Linder MC (1991) Nutritional biochemistry and metabolism: with clinical applications, 2nd edn. Elsevier, New York

    Google Scholar 

  • Lonergan PF, Pallotta MA, Lorimer M, Paull JG, Barker SJ, Graham RD (2009) Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol 184:168–179

    Article  CAS  PubMed  Google Scholar 

  • Lott JNA, Ockenden I, Raboy V, Batten GD (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10:11–33

    CAS  Google Scholar 

  • Lu K, Li L, Zheng X (2008) Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet 87(3):305–310

    Article  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Lungaho MG, Mwaniki AM, Szalma SJ (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6(6):e20429

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Lyons G, Stangoulis J, Graham R (2003) High-selenium wheat: biofortification for better health. Nutr Res Rev 16(1):45–60

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Kim E-Y, Han O (2010) Bioactive dietary polyphenols decrease heme iron absorption by decreasing basolateral iron release in human intestinal Caco-2 cells. J Nutr 140(6):1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Mahnaz P, Afyuni M, Khoshgoftarmanesh A, Schulin R (2010) Micronutrient status of calcareous paddy soils and rice products: implication for human health. Biol Fertil Soils 46(4):317–322

    Article  Google Scholar 

  • Mannar MGV, Sankar R (2004) Micronutrient fortification of foods rationale, application and impact. Indian J Pediatr 71(11):997–1002

    Article  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plant, 2nd edn. Academic, New York

    Google Scholar 

  • Martinez-Torres C, Layrisse M (1970) Effect of amino acids on iron absorption from a staple vegetable food. Blood 35:669–682

    CAS  PubMed  Google Scholar 

  • Mendoza C (2002) Effect of genetically modified low phytic acid plants on mineral absorption. Int J Food Sci Technol 37:759–767

    Article  CAS  Google Scholar 

  • Menkir A (2008) Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem 110:454–464

    Article  CAS  PubMed  Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21(4):392–396

    Article  Google Scholar 

  • Morgounov A, Gómez-Becerra HF, Abugalieva A (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Navert B, Sandsteraöm B, Cederblad Å (1985) Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. Br J Nutr 53:47–53

    Article  CAS  PubMed  Google Scholar 

  • Nayyar VK, Takkar PN, Bansal RL (1990) Amelioration of micro and secondary nutrient deficiencies. In: Micronutrients in soils and crops of Punjab. Research Bulletin, Department of Soils, Punjab Agricultural University, Ludhiana, p 148

    Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Nuss ET, Tanumihardjo SA (2010) Maize: a paramount staple crop in the context of global nutrition. Compr Rev Food Sci Food Saf 9:417–436

    Article  CAS  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Oury F-X, Leenhardt F, Remesy C (2006) Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur J Agron 25:177–185

    Article  CAS  Google Scholar 

  • Ozkan H, Brandolini A, Torun A, AltIntas S, Eker S, Kilian B, Braun HJ, Salamini F, Cakmak I (2007) Natural variation and identification of microelements content in seeds of Einkorn wheat (Triticum monococcum). Dev Plant Breed 12:455–462

    Article  Google Scholar 

  • Ozturk L, Yazici A, Eker S, Gokmen O, Romheld V, Cakmak I (2008) Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol 177:899–906

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy Rao P, Birthal PS, Reddy BVS, Rai KN, Ramesh S (2006) Diagnostics of sorghum and pearl millet grains-based nutrition in India. Int Sorghum Millets Newsl 46:93–96

    Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (1978) Trace elements and iron in human metabolism. Wiley, New York/Chichester

    Book  Google Scholar 

  • Prasad R (2010) Zinc biofortification of food grains in relation to food security and alleviation of zinc malnutrition. Curr Sci 98(10):1300–1304

    CAS  Google Scholar 

  • Reddy BVS, Ramesh S, Longvah T (2005) Prospects of breeding for micronutrients and carotenedense sorghums. Int Sorghum Millets Newsl 46:10–14

    Google Scholar 

  • Rengel Z, Graham RD (1995) Importance of seed Zn content for wheat growth on Zn deficient soil. 2. Grain yield. Plant Soil 173:267–274

    Article  CAS  Google Scholar 

  • Roeser HP (1986) Iron. J Food Nutr 42:82–92

    Google Scholar 

  • Roy JK, Balyan HS, Prasad M, Gupta PK (2002) Use of SAMPL for a study of polymorphism, genetic diversity and possible gene tagging. Theor Appl Genet 104:465–472

    Article  CAS  PubMed  Google Scholar 

  • Ruel MT, Bouis HE (1998) Plant breeding: a long-term strategy for the control of zinc deficiency in vulnerable populations. Am J Clin Nutr 68(Suppl 2):488S–494S

    CAS  PubMed  Google Scholar 

  • Sadeghzadeh B, Rengel Z, Li C, Yang H (2010) Molecular marker linked to a chromosome region regulating seed Zn accumulation in barley. Mol Breed 25(1):167–177

    Article  CAS  Google Scholar 

  • Sahrawat KL, Wani SP, Rego TG, Pardhasaradhi G, Murthy KVS (2007) Widespread deficiencies of sulphur, boron and zinc in dryland soils of the Indian semi-arid tropics. Curr Sci 93:1428–1432

    CAS  Google Scholar 

  • Sahrawat KL, Rego TG, Wani SP, Pardhasaradhi G (2008) Sulfur, boron and zinc fertilization effects on grain and straw quality of maize and sorghum grown on farmers’ fields in the semi-arid tropical region of India. J Plant Nutr 31:1578–1584

    Article  CAS  Google Scholar 

  • Sahrawat KL, Wani SP, Pardhasaradhi G, Murthy KVS (2010) Diagnosis of secondary and micronutrient deficiencies and their management in rainfed agro ecosystems: case study from Indian semi-arid tropics. Commun Soil Sci Plant Anal 41:346–360

    Article  CAS  Google Scholar 

  • Salt D, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Sanstead HH (1995) Is zinc deficiency a public health problem? Nutrition 11:87–92

    Google Scholar 

  • Sharma A (2001) Marker-assisted improvement of pearl millet (Pennisetum glaucum) downy mildew resistance in elite hybrid parental line H 77/833-2. PhD thesis, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India

    Google Scholar 

  • Shi R, Li H, Tong Y, Jing R, Zhang F, Zou C (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104

    Article  CAS  Google Scholar 

  • Simic D, Sudar R, Ledencan T, Jambrovic A, Zdunic Z, Brkic I, Kovacevic V (2009) Genetic variation of bioavailable iron and zinc in grain of a maize population. J Cereal Sci 50(3):392–397

    Article  CAS  Google Scholar 

  • Simic D, Drinic SM, Zdunic Z, Jambrovic A, Ledencan T, Brkic J, Brkic A, Brkic I (2012) Quantitative trait loci for biofortification traits in maize grain. J Hered 103:47–54

    Article  CAS  PubMed  Google Scholar 

  • Singh MV (2009) Effect of trace element deficiencies in soil on human and animal health. Bull Indian Soc Soil Sci 27:75–101

    Google Scholar 

  • Snedeker SM, Greger JL (1981) Effect of dietary protein, sulfur amino acids, and phosphorus on human trace element metabolism. Nutr Rep Int 23:853–863

    CAS  Google Scholar 

  • Snedeker SM, Greger JL (1983) Metabolism of zinc, copper, and iron as affected by dietary protein, cysteine, and histidine. J Nutr 113:644–652

    CAS  PubMed  Google Scholar 

  • Sotelo A, González-Osnaya L, Sánchez-Chinchillas A, Trejo A (2010) Role of oxate, phytate, tannins and cooking on iron bioavailability from foods commonly consumed in Mexico. Int J Food Sci Nutr 61(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Stangoulis JCR, Huynh BL, Welch RM (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Article  Google Scholar 

  • Susanto U (2009) Mapping QTLs controlling iron and zinc contents in polished rice grains using SSR. Poster presentation on international rice genetic symposium, Manila, Philippines

    Google Scholar 

  • Takkar PN, Walker CD (1993) The distribution and correction of zinc deficiency. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Press, Dordrecht, pp 151–165

    Chapter  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100:771–776

    Article  CAS  PubMed  Google Scholar 

  • Underwood EJ (1977) Trace elements in human nutrition, 4th edn. Academic, New York, p 545

    Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement, vol. 1: genomics approaches and platforms, p. 386 and vol. 2: genomics applications in crops, p. 516. Springer, Houten

    Google Scholar 

  • Velu G (2013) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59(3):365–372

    Article  CAS  Google Scholar 

  • Velu G, Rai KN, Sahrawat KL, Sumalini K (2006) Variability for grain iron and zinc contents in pearl millet hybrids. SAT eJournal 6:1–4

    Google Scholar 

  • Vreugdenhil D, Aarts MGM, Koornneef M, Nelissen H, Ernst WHO (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ 27:828–839

    Article  CAS  Google Scholar 

  • Waters BM, Pedersen JF (2009) Sorghum germplasm profiling to assist breeding and gene identification for biofortification of grain mineral and protein concentration. In: The proceedings of the international plant nutrition colloquium XVI, UC Davis, 26–30 Aug 2009

    Google Scholar 

  • Weiss MG (1943) Inheritance and physiology of efficiency in iron utilization in soybeans. Genetics 28:253–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM (1999) Effects of nutrient deficiencies on seed production and quality. Adv Nutr Res 2:205–247

    Google Scholar 

  • Welch RM (2001) Micronutrients, agriculture, and nutrition: linkages for improved health and well-being. In: Singh K et al (eds) Perspectives on the micronutrient nutrition of crops. Scientific Publishers, Jodhpur, pp 247–289

    Google Scholar 

  • Welch RM (2005) Biotechnology, biofortification, and global health. Food Nutr Bull 26:419–421

    Article  PubMed  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise A (1995) Phytate and zinc bioavailability. Int J Food Sci Nutr 46:53–63

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yuan YX, Zhang XW (2008) Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Soil 310:25–40

    Article  CAS  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought stress conditions. Theor Appl Genet 104:67–83

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci SA, Cakmak I (1997) Effect of different zinc application methods on grain yield and zinc concentration in wheat grown on zinc-deficient calcareous soils in Central Anatolia. J Plant Nutr 20:461–471

    Article  CAS  Google Scholar 

  • Zamzam K (Fariba) Roughead, Zito CA, Hunt JR (2005) Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: comparisons using an intestinal lavage method. Am J Clin Nutr 82(3):589–597

    Google Scholar 

  • Zeng ZB, Houle D, Cockerham CC (1990) How informative is Wright’s estimator of the number of genes affecting a quantitative character? Genetics 126:235–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Chen P, Shi A, Hou A, Ishibashi T, Wang D (2009) Putative quantitative trait loci associated with calcium content in soybean seed. J Hered 100:263–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Guoping Z, Longbiao G, Huizhong W, Dali Z, Guojun D, Qian Q, Dawei X (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173–179

    Article  CAS  Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ et al (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    Article  CAS  Google Scholar 

  • Zhou JR, Erdman JW Jr (1995) Phytic acid in health and disease. Crit Rev Food Sci Nutr 35:495–508

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kumar, S., Thirunavukkarasu, N., Singh, G., Sharma, R., Kulkarni, K.S. (2015). Biofortification for Selecting and Developing Crop Cultivars Denser in Iron and Zinc. In: Rakshit, A., Singh, H.B., Sen, A. (eds) Nutrient Use Efficiency: from Basics to Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2169-2_16

Download citation

Publish with us

Policies and ethics