Skip to main content

On the Isomorphism Problem for Coxeter Groups and Related Topics

  • Conference paper
  • First Online:
  • 1014 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 82))

Abstract

The isomorphism problem, which is a problem of deciding whether or not given two elements in a class of some kind of mathematical objects are isomorphic to each other, is a ubiquitous problem in mathematics. This paper gives a survey of recent developments for the isomorphism problem for (finitely generated or general) Coxeter groups and some related topics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is not obvious but well-known that the Coxeter matrix is uniquely determined by the pair \((W,S)\); namely, \(m(s,t)\) is precisely the order of the element \(st\) in \(W\).

  2. 2.

    Usually, when \(m = 3\), the type of the group is classified as \(A_2\) rather than \(I_2(3)\). Similarly, when \(m = 4\), the type of the group is classified as \(B_2\) (also called \(C_2\)) rather than \(I_2(4)\).

  3. 3.

    The author does not know whether or not there exists a standard name for the type; the same also holds for type \(A_{\infty ,\infty }\) below.

  4. 4.

    For simplicity, we identify a matrix in \({\mathrm {GL}}(2,{\mathbb {Z}} )\) with its equivalence class in \({\mathrm {PGL}}(2,{\mathbb {Z}} )\).

  5. 5.

    To the author’s best knowledge, the term “rigid” for Coxeter groups was first introduced in the title of Radcliffe’s preprint [43], though the term does not appear in its text.

  6. 6.

    For example, \(W\) is strongly rigid if and only if \(W\) is rigid and \({\mathrm {Out}}(W)\) is trivial.

  7. 7.

    A “free product decomposition” version of Theorem 3.1 was also shown in a preprint version of the paper [30] by Mihalik, Ratcliffe and Tschantz.

  8. 8.

    We note that, in the present case, the paper [42] generalizes the result on direct indecomposability in the finite rank case to a wider class consisting of subgroups of finite index of those Coxeter groups, therefore the result of [42] does not follow from the results in [37].

  9. 9.

    We note that such a counterexample cannot be found in finite Coxeter groups, since finite Coxeter groups are known to be reflection rigid; see Theorem 3.10 of [5].

  10. 10.

    In the same paper, Radcliffe mentioned (without proof) that the condition for the finiteness of ranks can be removed.

  11. 11.

    This condition means that the dimension of the Davis complex \(\varSigma (W,S)\) for \((W,S)\) is at most two.

  12. 12.

    The latter condition is equivalent to that all elements of \({\mathrm {Ref}}_S(W)\) are conjugate in \(W\).

References

  1. Bahls, P.: A new class of rigid Coxeter groups. Int. J. Algebra Comput. 13(1), 87–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bahls, P.: Rigidity of two-dimensional Coxeter groups. Preprint, arXiv:math/0311177v2 (2004)

  3. Bahls, P., Mihalik, M.: Reflection independence in even Coxeter groups. Geom. Dedicata 110, 63–80 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bannai, E.: Automorphisms of irreducible Weyl groups. J. Fac. Sci. Univ. Tokyo Sect. 1 A 16, 273–286 (1969)

    Google Scholar 

  5. Brady, N., McCammond, J.P., Mühlherr, B., Neumann, W.D.: Rigidity of Coxeter groups and Artin groups. Geom. Dedicata 94, 91–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brink, B.: On centralizers of reflections in Coxeter groups. Bull. London Math. Soc. 28(5), 465–470 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brink, B., Howlett, R.B.: Normalizers of parabolic subgroups in Coxeter groups. Invent. Math. 136, 323–351 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caprace, P.-E., Mühlherr, B.: Reflection rigidity of \(2\)-spherical Coxeter groups. Proc. London Math. Soc. 94(3), 520–542 (2007)

    Google Scholar 

  9. Caprace, P.-E., Przytycki, P.: Twist-rigid Coxeter groups. Geom. Topology 14, 2243–2275 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caprace, P.-E., Przytycki, P.: Bipolar Coxeter groups. J. Algebra 338, 35–55 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Castella, A.: Sur les automorphismes et la rigidité des groupes de Coxeter à angles droits. J. Algebra 301, 642–669 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Charney, R., Davis, M.: When is a Coxeter system determined by its Coxeter groups? J. London Math. Soc. 61(2), 441–461 (2000)

    Google Scholar 

  13. Cohen, A.M.: Coxeter groups and three related topics. In: Barlotti, A., et al. (eds.) Generators and Relations in Groups and Geometries, NATO ASI Series, pp. 235–278. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  14. Deodhar, V.V.: A note on subgroups generated by reflections in Coxeter groups. Arch. Math. (Basel) 53, 543–546 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dyer, M.: Reflection subgroups of Coxeter systems. J. Algebra 135, 57–73 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Franzsen, W.N.: Automorphisms of Coxeter groups of rank 3 with infinite bonds. J. Algebra 248, 381–396 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Franzsen, W.N., Howlett, R.B.: Automorphisms of Coxeter groups of rank three. Proc. Amer. Math. Soc. 129, 2607–2616 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Franzsen, W.N., Howlett, R.B.: Automorphisms of nearly finite Coxeter groups. Adv. Geom. 3, 301–338 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Franzsen, W.N., Howlett, R.B., Mühlherr, B.: Reflections in abstract Coxeter groups. Comment. Math. Helv. 81, 665–697 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hosaka, T.: Coxeter systems with two-dimensional Davis-Vinberg complexes. J. Pure Appl. Algebra 197, 159–170 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hosaka, T.: A class of rigid Coxeter groups. Houston J. Math. 32(4), 1029–1036 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Howlett, R.B., Mühlherr, B.: Isomorphisms of Coxeter groups which do not preserve reflections. Preprint (2004)

    Google Scholar 

  23. Howlett, R.B., Rowley, P.J., Taylor, D.E.: On outer automorphism groups of Coxeter groups. Manuscripta Math. 93, 499–513 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Humphreys, J.E.: Reflection groups and Coxeter groups. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  25. James, L.D.: Complexes and Coxeter groups—operations and outer automorphisms. J. Algebra 113, 339–345 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kaul, A.: A class of rigid Coxeter groups. J. London Math. Soc. 66(2), 592–604 (2002)

    Google Scholar 

  27. Marquis, T., Mühlherr, B.: Angle-deformations in Coxeter groups. Algebraic Geom. Top. 8, 2175–2208 (2008)

    Article  MATH  Google Scholar 

  28. Mihalik, M.: The even isomorphism theorem for Coxeter groups. Trans. Amer. Math. Soc. 359(9), 4297–4324 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mihalik, M.: JSJ decompositions of Coxeter groups over virtually abelian splittings. Preprint, arXiv:0804.3963v2 (2009)

  30. Mihalik, M., Ratcliffe, J., Tschantz, S.: Matching theorems for systems of a finitely generated Coxeter group. Algebraic Geom. Top. 7, 919–956 (2007); see also: On the isomorphism problem for finitely generated Coxeter groups. I: Basic matching, arXiv:math/0501075v1 (2005)

  31. Mihalik, M., Tschantz, S.: Visual decompositions of Coxeter groups. Groups Geom. Dyn. 3, 173–198 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mühlherr, B.: Automorphisms of graph-universal Coxeter groups. J. Algebra 200, 629–649 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mühlherr, B.: On isomorphisms between Coxeter groups. Des. Codes Cryptogr. 21, 189–189 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mühlherr, B.: The isomorphism problem for Coxeter groups. In: Davis, C., Ellers, E.W. (eds.) The Coxeter Legacy, pp. 1–15. American Mathematical Society, Providence (2006)

    Google Scholar 

  35. Mühlherr, B., Nuida, K.: Reflection independent Coxeter groups of arbitrary ranks. Preprint (2013)

    Google Scholar 

  36. Mühlherr, B., Weidmann, R.: Rigidity of skew-angled Coxeter groups. Adv. Geom. 2, 391–415 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nuida, K.: On the direct indecomposability of infinite irreducible Coxeter groups and the isomorphism problem of Coxeter groups. Commun. Algebra 34(7), 2559–2595 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nuida, K.: Centralizers of reflections and reflection-independence of Coxeter groups. Preprint, arXiv:math/0602165v1 (2006)

  39. Nuida, K.: Almost central involutions in split extensions of Coxeter groups by graph automorphisms. J. Group Theory 10, 139–166 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Nuida, K.: On centralizers of parabolic subgroups in Coxeter groups. J. Group Theory 14(6), 891–930 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Nuida, K.: Locally parabolic subgroups in Coxeter groups of arbitrary ranks. J. Algebra 350, 207–217 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Paris, L.: Irreducible Coxeter groups. Int. J. Algebra Comput. 17(3), 427–447 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Radcliffe, D.G.: Rigidity of right-angled Coxeter groups. Preprint, arXiv:math/9901049v1 (1999)

  44. Radcliffe, D. G.: Unique presentation of Coxeter groups and related groups. Ph.D. thesis, University of Wisconsin-Milwaukee (2001)

    Google Scholar 

  45. Radcliffe, D.G.: Rigidity of graph products of groups. Algebraic Geom. Top. 3, 1079–1088 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  46. Ratcliffe, J.G., Tschantz, S.T.: Chordal Coxeter groups. Geom. Dedicata 136, 57–77 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ratcliffe, J.G., Tschantz, S.T.: JSJ decompositions of Coxeter groups over FA subgroups. Topology Proc. 42, 57–72 (2013)

    MATH  MathSciNet  Google Scholar 

  48. Richardson, R.W.: Conjugacy classes of involutions in Coxeter groups. Bull. Austral. Math. Soc. 26, 1–15 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  49. Stillwell, J.: Classical Topology and Combinatorial Group Theory, 2nd edn., GTM, vol. 72. Springer, New York (1993)

    Google Scholar 

  50. Tits, J.: Sur le groupe des automorphismes de certains groupes de Coxeter. J. Algebra 113, 346–357 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This survey paper is based on a two-hour talk by the author at the Workshop and Conference on Groups and Geometries, Indian Statistical Institute Bangalore, India, December 10–21, 2012. The author would like to thank Professor N. S. Narasimha Sastry for inviting him to the conference and giving him an opportunity to give a talk. The author would also like to thank the participants to the conference, especially Professor Luis Paris, who gave precious comments to the talk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nuida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Nuida, K. (2014). On the Isomorphism Problem for Coxeter Groups and Related Topics. In: Sastry, N. (eds) Groups of Exceptional Type, Coxeter Groups and Related Geometries. Springer Proceedings in Mathematics & Statistics, vol 82. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1814-2_12

Download citation

Publish with us

Policies and ethics