Skip to main content

Recent Advances in Research on Cannabis sativa L. Endophytes and Their Prospect for the Pharmaceutical Industry

  • Chapter
  • First Online:

Abstract

Endophytic microorganisms residing within plants are constantly communicating with them and the external environment by means of various interaction mechanisms and biochemical processes. Although plants have evolved their own defense mechanisms, sometimes they fail to defend themselves from the constant attack of devastating and emerging pathogens. Thus, research involving endophytes that aid the defense responses of their host plants can be useful in biocontrol and pest management strategies. Elucidating the chemistry of endophyte–plant interactions can provide new insights into the production of target and/or nontarget metabolites, thereby enabling a better understanding of the metabolic processes in planta and ex planta. In this chapter, we highlight the interactions of endophytes harbored in the medicinally important plant Cannabis sativa L. with the host plant as well as with the pathogens. The various endophyte–plant–pathogen defense–counter defense crosstalk would aid in exploring the biocontrol potential of endophytes in thwarting pathogens attacking the plants, and thus, effectively decrease the loss of such therapeutically relevant medicinal plants. Such interactions will further lead to the discovery of bioactive compounds, including the ones exclusive to the host plants. This chapter deals with the recent advances made in bioprospecting endophytes harbored in C. sativa L. with regard to their efficacies in thwarting phytopathogens. When endophytes are challenged with host-specific phytopathogens, they show an assortment of physical and chemical defense responses under different media conditions. This supports the concept of one strain many compounds (OSMAC) approach. Using cues from the current investigation, future research can maximize the possibility of a holistic understanding of endophyte–endophyte, endophyte–plant, and endophyte–pathogen relationships.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed SA, Ross SA, Slade D, Radwan MM, Zulfiqar F, ElSohly MA (2008) Cannabinoid ester constituents from high-potency Cannabis sativa. J Nat Prod 71:536–542

    Article  CAS  PubMed  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 158:315–348

    Article  Google Scholar 

  • Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM (2008) Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod 71:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Deker Inc, New York

    Google Scholar 

  • Baker D, Pryce G, Giovannoni G, Thompson AJ (2003) The therapeutic potential of cannabis. Lancet Neurol 2:291–298

    Article  CAS  PubMed  Google Scholar 

  • Barloy J, Pelhate J (1962) PremiËres observations phytopathologiques relatives aux cultures de chanvre en Anjou. Ann Epiphyties 13:117–149

    Google Scholar 

  • Bush Doctor (1985) Damping off. Sinsemilla Tips 5:35–39

    Google Scholar 

  • Bush Doctor, The (1993) How to preserve pot potency. High Times No 213:75, 77–78

    Google Scholar 

  • Carchman RA, Harris LS, Munson AE (1976) The inhibition of DNA synthesis by cannabinoids. Cancer Res 36:95–100

    CAS  PubMed  Google Scholar 

  • Chen KK, Schmidt CF (1924) The action of ephedrine, the active principle of the Chinese drug ma huang. J Pharmacol Exp Ther 24:339–357

    CAS  Google Scholar 

  • Dewey LH (1914) “Hemp”. In: U.S.D.A. yearbook 1913 United States Department of Agriculture, Washington, DC, pp 283–347

    Google Scholar 

  • Elsohly HN, Turner CE, Clark AM, Elsohly MA (1982) Synthesis and antimicrobial activities of certain cannabichromene and cannabigerol related compounds. J Pharm Sci 71:1319–1323

    Article  Google Scholar 

  • ElSohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    Article  CAS  PubMed  Google Scholar 

  • ElSohly MA, Wachtel SR, de Wit H (2003) Cannabis versus THC: response to Russo and McPartland. Psychopharmacology (Berl) 165:433–434

    CAS  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Fernald ML (1950) Gray’s manual of botany, 4th ed. American Book Company, New York, p 556

    Google Scholar 

  • Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R (2010) Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes Phytochemistry 71:2058–2073

    Google Scholar 

  • Flemming T, Muntendam R, Steup C, Kayser O (2007) Chemistry and biological activity of tetrahydrocannabinol and its derivatives. In: Khan MTH (ed) Topics in heterocyclic chemistry, vol. 10. Springer, Berlin, pp 1–42

    Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in Cannabis. Phytochem Rev 7:615–639

    Article  CAS  Google Scholar 

  • Flores-Sanchez IJ, Pec J, Fei J, Choi YH, Dusek J, Verpoorte R (2009) Elicitation studies in cell suspension cultures of Cannabis sativa L. J Biotechnol 143:157–168

    Article  CAS  PubMed  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC, Mira L, Corvo ML (2008) Molecular mechanisms of anti-inflammatory activity mediated by flavonoids. Curr Med Chem 15:1586–1605

    Article  CAS  PubMed  Google Scholar 

  • Grotenhermen F (2002) Review of therapeutic effects. In: Grothenhermen F, Russo E (eds) Cannabis and cannabinoids: pharmacology, toxicology and therapeutic potential. The Haworth Integrative Healing Press, New York, pp. 123–142

    Google Scholar 

  • Grotenhermen F, Müller-Vahl K (2012) The therapeutic potential of Cannabis and cannabinoids. Medicine Dtsch Arztebl Int 109:495–501

    Google Scholar 

  • Guerin P (1898) Sur la presence d’un champignon dansl’ivraie. J Botanique 12:230–238

    Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Happyana N, Agnolet S, Muntendam R, Van Dam A, Schneider B, Kayser O (2013) Cannabinoid analysis of laser-microdissected trichomes of Cannabis sativa L. by LC-MS and cryogenic NMR. Phytochemistry. 87:51–59

    Google Scholar 

  • Hartsel SC, Loh WH, Robertson LW (1983) Biotransformation of cannabidiol to cannabielsoin by suspension cultures of Cannabis sativa and Saccharum officinarum. Planta Med 48:17–19

    Article  CAS  PubMed  Google Scholar 

  • Hazekamp A, Choi YH, Verpoorte R (2004) Quantitative analysis of cannabinoids from Cannabis sativa using 1H-NMR. Chem Pharm Bull 52:718–721

    Article  CAS  PubMed  Google Scholar 

  • Hazekamp A, Giroud C, Peltenburg A, Verpoorte R (2005) Spectroscopic and chromatographic data of cannabinoids from Cannabis sativa. J Liq Chrom Rel Technol 28:2361–2382

    Article  CAS  Google Scholar 

  • Hockey JF (1927) Report of the Dominion field laboratory of plant pathology, Kentville Nova Scotia. Canada Department of Agriculture: 28–36

    Google Scholar 

  • Holler JG, Sondergaard K, Slotved HC, Guzman A, Molgaard P (2012) Evaluation of the antibacterial activity of Chilean plants traditionally used for wound healing therapy against multidrug-resistant Staphylococcus aureus. Planta Med 78:200–205

    Article  CAS  PubMed  Google Scholar 

  • Jiang HE, Li X, Zhao YX, Ferguson DK, Hueber F, Bera S, Wang YF, Zhao LC, Liu CJ, Li CS (2006) A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J Ethnopharmacol 108:414–422

    Article  PubMed  Google Scholar 

  • Kawamoto M, Utsukihara T, Abe C, Sato M, Saito M, Koshimura M, Kato N, Horiuchi CA (2008) Biotransformation of (±)-2-methylcyclohexanone by fungi. Biotechnol Lett 30:1655–1660

    Article  CAS  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Qazi PH, Sudan P, Khajuria RK, Sultan P, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Kurup VP, Resnick A, Kagen SL, Cohen SH, Fink JN (1983) Allergenic fungi and actinomycetes in smoking materials and their health implications. Mycopathologia 82:61–64

    Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2013a) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers. 60:137–151

    Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Metabolomics. Roessner U (ed) In Tech, ISBN 978–953-51–0046-1, pp 241–266

    Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Google Scholar 

  • Kusari S, Zuehlke S, Spiteller M (2009a) An endophytic fungi from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009b) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  CAS  Google Scholar 

  • Kusari S, Zühlke S, Kosuth J, Cellarova E, Spiteller M (2009c) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835

    Article  CAS  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Verma VC, Lamshöft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012c) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  Google Scholar 

  • Kusari S, Pandey SP, Spiteller M (2013b) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry. 91:81–87

    Google Scholar 

  • Levitz SM, Diamond RD (1991) Aspergillosis and marijuana. Ann Int Med 115:578–579

    Google Scholar 

  • Li SH, Zhang HJ, Yao P, Sun HD, Fong HHS (2001) Taxane diterpenoids from the bark of Taxus yunnanensis. Phytochemistry 58:369–374

    Article  CAS  PubMed  Google Scholar 

  • Linnaeus C (1753) Species plantarum. T. I–II. Laurentius Salvius, Stockholm

    Google Scholar 

  • Lopez-Lazaro M, de la Pena NP, Pastor N, Martin-Cordero C, Navarro E, Cortes F, Ayuso MJ, Toro MV (2003) Anti-tumour activity of Digitalis purpurea L. subsp. heywoodii. Planta Med 69:701–704

    Article  CAS  PubMed  Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  PubMed  Google Scholar 

  • McClanahan RH, Robertson LW (1985) Microbial transformation of olivetol by Fusarium roseum. J Nat Prod 48:660–663

    Article  CAS  Google Scholar 

  • McPartland JM (1983) Fungal pathogens of Cannabis sativa in Illinois. Phytopathology 72:797

    Google Scholar 

  • McPartland JM (1991) Common names for diseases of Cannabis sativa L. Plant Dis 75:226–227

    Google Scholar 

  • McPartland JM (1994) Microbiological contaminants of marijuana. J Int Hemp Assoc 1:41–44

    Google Scholar 

  • McPartland JM (1995) Cannabis pathogens X: Phoma, Ascochyta and Didymella species. Mycologia 86:870–878

    Article  Google Scholar 

  • McPartland JM (1996) A review of Cannabis diseases. J Int Hemp Assoc 3:19–23

    Google Scholar 

  • McPartland JM, Clarke RC, Watson DP (2000) Hemp diseases and pests: management and biological control. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Miyazawa M, Nankai H, Kameoka H (1997) Enantioselective cyclization of (±)-lavandulol to (-)-(2S, 4S)-1, 5-epoxy-5-methyl-2-(1-methylethenyl)-4-hexanol by Glomerellacingulata. Nat Prod Lett 9:249–252

    Article  CAS  Google Scholar 

  • Mojzisova G, Mojzis J (2008) Flavonoids and their potential health benefits: relation to heart diseases and cancer. Recent Prog Med Plants 21:105–129

    CAS  Google Scholar 

  • Murray RM, Morrison PD, Henquet C, Di Forti M (2007) Cannabis, the mind and society: the hash realities. Nat Rev Neurosci 8:885–895

    Article  CAS  PubMed  Google Scholar 

  • Musty RE (2004) Natural cannabinoids: interactions and effects. In: Guy GW, Whittle BA, Robson PJ (eds) The medicinal uses of cannabis and cannabinoids. Pharmaceutical Press, London, pp. 165–204

    Google Scholar 

  • Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147:163–171

    Google Scholar 

  • Pollastro F, Taglialatela-Scafati O, Allar M, Munoz E, Marzo VD, Petrocellis LD, Appendino G (2011) Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa). J Nat Prod 74:2019–2022

    Article  CAS  PubMed  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  CAS  PubMed  Google Scholar 

  • Radwan MM, Ross SA, Slade D, Ahmed SA, Zulfiqar F, ElSohly MA (2008) Isolation and characterization of new Cannabis constituents from a high potency variety. Planta Med 74:267–272

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strat Glob Change 9:261–272

    Article  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Russo EB, McPartland JM (2003) Cannabis is more than simply delta(9)-tetrahydrocannabinol. Psychopharmacology (Berl) 165:431–432

    CAS  Google Scholar 

  • Saxena S (2009) Fungal biotransformations of cannabinoids: potential for new effective drugs. Curr Opin Drug Discov Develop 12:305–312

    CAS  Google Scholar 

  • Shweta S, Zühlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. exArn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  CAS  PubMed  Google Scholar 

  • Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582

    Google Scholar 

  • Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75–93

    Article  CAS  Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism. In: Bacon CW, White JF (ed) Microbial endophytes. Marcel Dekker Inc, New York, pp 3–30

    Google Scholar 

  • Strobel GA (2002) Microbial gifts from rain forests. Can J Plant Pathol 24:14–20

    Article  Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbial Mol Biol Rev 67:491–502

    Article  CAS  Google Scholar 

  • Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanana TS, Thirunavukkarasub N, Govindarajulub MB, Sassec F, Jansend R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Tanaka H, Takahashi R, Morimoto S, Shoyama YA (1997) New cannabinoid, Δ6-tetrahydrocannabinol 2Δ-O-β-d-glucopyranoside, biotransformed by plant tissue. J Nat Prod 60:168–170

    Article  CAS  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y, Mechoulam R (1995) First direct evidence for the mechanism of 1-tetrahydrocannabinolic acid biosynthesis. J Am Chem Soc 117:9766–9767

    Google Scholar 

  • Taura F, Sirikantaramas S, Shoyamaa Y, Shoyamaa Y, Morimotoa S (2007) Phytocannabinoids in Cannabis sativa: recent studies on biosynthetic enzymes. Chem Biodivers 4:1649–1663

    Article  CAS  PubMed  Google Scholar 

  • Toniazzo G, de Oliveira D, Dariva C, Oestreicher EG, Antunes OA (2005) Biotransformation of (-)-β-pinene by Aspergillusniger ATCC 9642. Appl Biochem Biotechnol 121–124:837–844

    Article  PubMed  Google Scholar 

  • Ungerlerder JT, Andrysiak T, Tashkin DP, Gale RP (1982) Contamination of marijuana cigarettes with pathogenic bacteria. Cancer Treatment Rep 66:589–590

    Google Scholar 

  • Wachtel SR, ElSohly MA, Ross SA, Ambre J, de Wit H (2002) Comparison of the subjective effects of D9-tetrahydrocannabinol and marijuana in humans. Psychopharmacology (Berl) 161:331–339

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson EM, Evans FJ (2000) Cannabinoids in clinical practice. Drugs 60:1303–1314

    Article  CAS  PubMed  Google Scholar 

  • Wills S (1998) Cannabis use and abuse by man: an historical perspective. In: Brown DT (ed) Cannabis: the genus Cannabis. Harwood Academic Publishers, Amsterdam, pp 1–27

    Chapter  Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3:1205–1216

    CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771 Recent Advances in Research on Cannabis sativa L. Endophytes …

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research at the Institute of Environmental Research (INFU) of the Faculty of Chemistry and Chemical Biology is supported by the International Bureau (IB) of the German Federal Ministry of Education and Research (BMBF/DLR), Germany, the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia, Germany, the German Academic Exchange Service (DAAD; “Welcome to Africa” initiative), and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). S. K. gratefully acknowledges M. S. for approving and authorizing, Gail M. Preston for hosting, and TU Dortmund for supporting his stay at the University of Oxford, UK, as a Visiting Researcher. Research at the Department of Biochemical and Chemical Engineering is supported by the Ministry of Innovation, Science and Research of the German Federal State North Rhine-Westphalia and the CLIB-Graduate Cluster Industrial Biotechnology (CLIB). We are thankful to Bedrocan BV for kindly providing us with the Cannabis sativa L. plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Kusari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Kusari, P., Spiteller, M., Kayser, O., Kusari, S. (2014). Recent Advances in Research on Cannabis sativa L. Endophytes and Their Prospect for the Pharmaceutical Industry. In: Kharwar, R., Upadhyay, R., Dubey, N., Raghuwanshi, R. (eds) Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1801-2_1

Download citation

Publish with us

Policies and ethics