Skip to main content

Oxidative Stress in Plants and Its Management

  • Chapter
  • First Online:
Approaches to Plant Stress and their Management

Abstract

We all live in an oxygen-rich environment which has to deal with the danger of oxidative stress. During normal cell metabolism, reactive oxygen species (ROS) are constantly produced, mainly by respiratory and photosynthetic components. These species mainly include superoxide radicals (O2 ), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (OH). The others are hydroperoxyl radical (HO2˙), alkoxy radical (RO˙), peroxyl radicals (ROO˙), and excited carbonyl (RO). But during stress conditions like salinity, drought, metal toxicity, herbicides, fungicides, air pollutants, hypoxia, and abnormal conditions of light, temperature, and topography, ROS are produced in excess amount. These highly reactive molecules can react with many cellular biomolecules and other components and damage DNA, proteins, and lipids. Thus, their concentration has to be tightly controlled. To counter the deleterious effects of ROS, aerobic organisms are equipped with antioxidant systems to scavenge ROS from the cells. Enzymatic antioxidants are mainly superoxide dismutase (SOD), catalase, ascorbate peroxidase, glutathione peroxidase, glutathione S-transferases, and peroxiredoxin, while the nonenzymatic antioxidants are mainly ascorbate, glutathione, proline, tocopherol, flavonoids, and carotenoids. These antioxidants protect against the oxidative damage by inhibiting or quenching free radicals and ROS. When the balance between the production of ROS and the quenching activities of antioxidants is disturbed, the cell faces the risk of oxidative stress and damage. These ROS creating stresses are numerous and often species or area specific. These stresses cause significant crop losses. There is a growing need to develop crops which can be resistant to the effects of various oxidative stresses. One such way is to develop transgenic plants overexpressing one or more antioxidants, which can confer resistance towards particular stress. Another way is to develop mutants which are resistant towards certain stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738

    PubMed  CAS  Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    PubMed  CAS  Google Scholar 

  • Agnez-Lima LF, Melo JT, Silva AE, Oliveira AH, Timoteo AR, Lima-Bessa KM, Martinez GR, Medeiros MH, Di Mascio P, Galhardo RS, Menck CF (2012) DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res, 751(1):15–28

    Google Scholar 

  • Ahlfors R, Lang S, Overmyer K, Jaspers P, Brosche M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inze D, Palva ET, Kangasjarvi J (2004) Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16:1925–1937

    PubMed  CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008a) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    CAS  Google Scholar 

  • Ahmad R, Kim MD, Back KH, Kim HS, Lee HS, Kwon SY, Murata N, Chung WI, Kwak SS (2008b) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27:687–698

    PubMed  CAS  Google Scholar 

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464

    CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835

    PubMed  CAS  Google Scholar 

  • Artlip TS, Wisniewski ME, Macarisin D, Norelli JL (2009) Ectopic expression of a Spinach SOD gene in young apple trees enhances abiotic stress resistance. Acta Hortic 839:645–650

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Google Scholar 

  • Asensio AC, Gil-Monreal M, Pires L, Gogorcena Y, Aparicio-Tejo PM, Moran JF (2012) Two Fe-superoxide dismutase families respond differently to stress and senescence in legumes. J Plant Physiol 169:1253–1260

    PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Azzedine F, Hocine G, Mebarek B (2011) Improvement of salt tolerance in durum wheat by ascorbic acid application. Plant Physiol Biochem 7:27–37

    Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166: 919–928

    Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Dona M, Carbonera D (2011) Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep 30:287–295

    PubMed  CAS  Google Scholar 

  • Barthakur S, Babu V, Bansa KC (2001) Over-expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. J Plant Biochem Biotechnol 10:31–37

    CAS  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1278–1269

    Google Scholar 

  • Belle NAV, Dalmolin GD, Fonini G, Rubin MA, Rocha JBT (2004) Polyamines reduces lipid peroxidation induced by different pro-oxidant agents. Brain Res 1008:245–251

    PubMed  CAS  Google Scholar 

  • Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611–1626

    PubMed  CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    CAS  Google Scholar 

  • Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol 47:75–100

    PubMed  CAS  Google Scholar 

  • Brot N, Weissbach L, Werth J, Weissbach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA 78:2155–2158

    PubMed  CAS  Google Scholar 

  • Cabreiro F, Picot CR, Friguet B, Petropoulos I (2006) Methionine sulfoxide reductases: relevance to aging and protection against oxidative stress. Ann N Y Acad Sci 1067:37–44

    PubMed  CAS  Google Scholar 

  • Cao S, Xu Q, Cao Y, Qian K, An K, Zhu Y, Binzeng H, Zhao H, Kuai B (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66

    CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    PubMed  CAS  Google Scholar 

  • Catala AA (2010) Synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. Biochem Biophys Res Commun 399:318–323

    PubMed  CAS  Google Scholar 

  • Charron JB, Ouellet F, Houde M, Sarhan F (2008) The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol 8:86

    PubMed  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    PubMed  Google Scholar 

  • Chen R, Sun S, Wang C, Li Y, Liang Y, An F, Li C, Dong H, Yang X, Zhang J, Zuo J (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19:1377–1387

    PubMed  CAS  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    PubMed  CAS  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    PubMed  CAS  Google Scholar 

  • Chiang C, Chen S, Chen L, Chiang M, Chien H, Lin K (2013) Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. J Plant Biochem Biotechnol. DOI:10.1007/s13562-013-0210-1

  • Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS (2013) Homologous expression of gamma-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. J Plant Physiol 170:610–618

    PubMed  CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Fernandez-Ocana A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodriguez-Serrano M, Chaki M, Pedrajas JR, Sandalio LM, del Rio LA, Barroso JB (2006) The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–994

    PubMed  CAS  Google Scholar 

  • Creissen GP, Broadbent P, Kular B, Reynolds H, Wellburn AR, Mullineaux PM (1994) Manipulation of glutathione reductase in transgenic plants: implications for plants’ responses to environmental stress. Proc R Soc Edinb Sect B Biol Sci 102:167–175

    Google Scholar 

  • Cruz FJR, Castro GLS, Silva Júnior DD, Festucci-Buselli RA, Pinheiro HA (2013) Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants. Photosynthetica 51:102–108

    CAS  Google Scholar 

  • Dąbrowska G, Kata K, Goc A, Szechyńska-Hebda M, Skrzypek E (2007) Characteristics of the plant ascorbate peroxidase family. Acta Biol Cracov Bot 49:7–17

    Google Scholar 

  • Das K, Misra H (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133

    PubMed  CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    PubMed  CAS  Google Scholar 

  • De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    PubMed  Google Scholar 

  • De Ronde JA, Cress WA, Kruger GH, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    PubMed  Google Scholar 

  • Debska K, Bogatek R, Gniazdowska A (2012) Protein carbonylation and its role in physiological processes in plants. Postepy Biochem 58:34–43

    PubMed  Google Scholar 

  • del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    PubMed  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    PubMed  CAS  Google Scholar 

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15:1129–1159

    PubMed  CAS  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS One 6:e16360

    PubMed  CAS  Google Scholar 

  • Dixon DP, Edwards R (2010) Glutathione transferases. Arabidopsis Book 8:e0131

    PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    PubMed  CAS  Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371

    CAS  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    PubMed  CAS  Google Scholar 

  • Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as anti-oxidants — a review. J Photochem Photobiol B Biol 41:189–200

    CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284

    PubMed  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    PubMed  CAS  Google Scholar 

  • Emiliani J, Grotewold E, Falcone Ferreyra ML, Casati P (2013) Flavonols protect Arabidopsis plants against UV-B deleterious effects. Mol Plant, 6 (4): 1376–1379

    Google Scholar 

  • Espinoza A, San Martin A, López-Climent M, Ruiz-Lara S, Gómez-Cadenas A, Casaretto JA (2013) Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. J Plant Physiol 170:1285–1294

    PubMed  CAS  Google Scholar 

  • Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344

    PubMed  CAS  Google Scholar 

  • Filkowski J, Kovalchuk O, Kovalchuk I (2004) Genome stability of vtc1, tt4, and tt5 Arabidopsis thaliana mutants impaired in protection against oxidative stress. Plant J 38:60–69

    PubMed  CAS  Google Scholar 

  • Fischer BB, Hideg E, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal, 18: 2145–2162

    Google Scholar 

  • Flocco CG, Lindblom SD, Smits EA (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6:289–304

    PubMed  CAS  Google Scholar 

  • Flors C, Nonell S (2006) Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins. Acc Chem Res 39:293–300

    PubMed  CAS  Google Scholar 

  • Flors C, Ogilby PR, Luis JG, Grillo TA, Izquierdo LR, Gentili PL, Bussotti L, Nonell S (2006) Phototoxic phytoalexins. Processes that compete with the photosensitized production of singlet oxygen by 9-phenylphenalenones. Photochem Photobiol 82:95–103

    PubMed  CAS  Google Scholar 

  • Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287:C246–C256

    PubMed  CAS  Google Scholar 

  • Foyer C, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Google Scholar 

  • Foyer CH, Mullineaux PM (1998) The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues. FEBS Lett 425:528–529

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    PubMed  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott I (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    CAS  Google Scholar 

  • Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT (2004) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol 134:275–285

    PubMed  CAS  Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128:251–262

    CAS  Google Scholar 

  • Gang W, Zhen-Kuan W, Yong-Xiang W, Li-Ye C, Hong-Bo S (2007) The mutual responses of higher plants to environment: physiological and microbiological aspects. Colloids Surf B Biointerfaces 59:113–119

    PubMed  Google Scholar 

  • Gechev TS, Ferwerda MA, Mehterov N, Laloi C, Qureshi MK, Hille J (2008) Arabidopsis AAL-toxin-resistant mutant atr1 shows enhanced tolerance to programmed cell death induced by reactive oxygen species. Biochem Biophys Res Commun 375:639–644

    PubMed  CAS  Google Scholar 

  • George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318

    PubMed  CAS  Google Scholar 

  • Giba Z, Todorivic S, Grubisic D, Konjevic R (1998) Occurrence and regulatory roles of superoxide anion radical and nitric oxide in plants. Iugoslav Physiol Pharmacol Acta 34:447–461

    CAS  Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    PubMed  CAS  Google Scholar 

  • Guo X, Wu Y, Wang Y, Chen Y, Chu C (2009) OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230:227–238

    PubMed  CAS  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993a) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    PubMed  CAS  Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993b) Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 103:1067–1073

    PubMed  Google Scholar 

  • Hagar H, Ueda N, Shah SV (1996) Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Am J Physiol 271:209–215

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    PubMed  CAS  Google Scholar 

  • Hemavathi, Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330

    PubMed  CAS  Google Scholar 

  • Hemavathi, Upadhyaya CP, Younga KE, Akulaa N, Kimb HS, Heungb JJ, Ohc OM, Aswathd CR, Chuna SC, Kima DH, Parka SW (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667

    Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savourà A, Jaoua S (2005) Overexpression of ÎΔ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    CAS  Google Scholar 

  • Holmstrom K-O, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51:177–185

    PubMed  CAS  Google Scholar 

  • Hong-Ying H, Wen-Ling L, Li-Ying S, Zhan S, Cheng-Wei Y, Chang-Lian P (2010) Increased resistance of Arabidopsis cpr5 mutant to H2O2- induced photooxidation. Pak J Bot 42:1041–1049

    Google Scholar 

  • Hu T, Qv X, Xiao G, Huang X (2009) Enhanced tolerance to herbicide of rice plants by over-expression of a glutathione S-transferase. Mol Breed 24:409–418

    CAS  Google Scholar 

  • Jang S, Wi S, Choi Y, An G, Park K (2012) Increased polyamine biosynthesis enhances stress tolerance by preventing the accumulation of reactive oxygen species: T-DNA mutational analysis of Oryza sativa lysine decarboxylase-like protein 1. Mol Cells 34:251–262

    PubMed  CAS  Google Scholar 

  • Jayaraj J, Punja ZK (2008) Transgenic carrot plants accumulating ketocarotenoids show tolerance to UV and oxidative stresses. Plant Physiol Biochem 46:875–883

    PubMed  CAS  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179

    PubMed  CAS  Google Scholar 

  • Jing L-W, Chen S-H, Guo X-L, Zhang H, Zhao Y-X (2006) Overexpression of a chloroplast-located peroxiredoxin Q gene, SsPrxQ, increases the salt and low-temperature tolerance of Arabidopsis. J Integr Plant Biol 48:1244–1249

    CAS  Google Scholar 

  • Jonsson TJ, Murray MS, Johnson LC, Lowther WT (2008) Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J Biol Chem 283:23846–23851

    PubMed  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    PubMed  CAS  Google Scholar 

  • Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39:1269–1280

    PubMed  CAS  Google Scholar 

  • Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128

    PubMed  CAS  Google Scholar 

  • Karlsson M, Melzer M, Prokhorenko I, Johansson T, Wingsle G (2005) Hydrogen peroxide and expression of hipI-superoxide dismutase are associated with the development of secondary cell walls in Zinnia elegans. J Exp Bot 56:2085–2093

    PubMed  CAS  Google Scholar 

  • Karthikeyan A, Pandian S, Ramesh M (2011) Transgenic indica rice cv. ADT 43 expressing a Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell Tissue Organ Cult (PCTOC) 107:383–395

    CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83

    CAS  Google Scholar 

  • Kiba A, Nishihara M, Tsukatani N, Nakatsuka T, Kato Y, Yamamura S (2005) A peroxiredoxin Q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Plant Cell Physiol 46:1007–1015

    PubMed  CAS  Google Scholar 

  • Kim KH, Alam I, Lee KW, Sharmin SA, Kwak SS, Lee SY, Lee BH (2010) Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnol Lett 32:571–576

    PubMed  CAS  Google Scholar 

  • Kim MD, Kim YH, Kwon SY, Jang BY, Lee SY, Yun DJ, Cho JH, Kwak SS, Lee HS (2011) Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiol Biochem 49:891–897

    PubMed  CAS  Google Scholar 

  • Kim B-G, Lee E-R, Ahn J-H (2012) Analysis of flavonoid contents and expression of flavonoid biosynthetic genes in Populus euramericana Guinier in response to abiotic stress. J Korean Soc Appl Biol Chem 55:141–145

    CAS  Google Scholar 

  • Kiran Kumar Ghanti S, Sujata KG, Vijay Kumar BM, Nataraja Karba N, Janardhan Reddy K, Srinath Rao M, Kavi Kishor PB (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Plant 55:634–640

    Google Scholar 

  • Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kotchoni SO, Gachomo EW (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31:389–404

    PubMed  CAS  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048

    PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A, Trebst A (2006) Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J Exp Bot 57:1677–1684

    PubMed  CAS  Google Scholar 

  • Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44:671–681

    PubMed  CAS  Google Scholar 

  • Kubo A, Saji H, Tanaka K, Kondo N (1995) Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol Biol 29:479–489

    PubMed  CAS  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 248–249:228–237

    PubMed  Google Scholar 

  • Kurepa J, Smalle J, Montagu MV, Inzé D (1998a) Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiol 39:987–992

    PubMed  CAS  Google Scholar 

  • Kurepa J, Smalle J, Van Montagu M, Inzé D (1998b) Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J 14:759–764

    PubMed  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    PubMed  CAS  Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882

    Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    PubMed  CAS  Google Scholar 

  • Kwon SJ, Kwon SI, Bae MS, Cho EJ, Park OK (2007) Role of the methionine sulfoxide reductase MsrB3 in cold acclimation in Arabidopsis. Plant Cell Physiol 48:1713–1723

    PubMed  CAS  Google Scholar 

  • Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ (2006) Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 45:968–981

    PubMed  CAS  Google Scholar 

  • Leclercq J, Martin F, Sanier C, Clement-Vidal A, Fabre D, Oliver G, Lardet L, Ayar A, Peyramard M, Montoro P (2012) Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Mol Biol 80:255–272

    PubMed  CAS  Google Scholar 

  • Lederer B, Boger P (2003) Antioxidative responses of tobacco expressing a bacterial glutathione reductase. Z Naturforsch C 58:843–849

    PubMed  CAS  Google Scholar 

  • Lee KO, Jang HH, Jung BG, Chi YH, Lee JY, Choi YO, Lee JR, Lim CO, Cho MJ, Lee SY (2000) Rice 1Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBS Lett 486:103–106

    PubMed  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    PubMed  CAS  Google Scholar 

  • Lee S-C, Kwon S-Y, Kim S-R (2009) Ectopic expression of a cold-responsive CuZn superoxide dismutase gene, SodCc1, in transgenic rice (Oryza sativa L.). J Plant Biol 52:154–160

    CAS  Google Scholar 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010a) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434

    PubMed  CAS  Google Scholar 

  • Li QY, Niu HB, Yin J, Shao HB, Niu JS, Ren JP, Li YC, Wang X (2010b) Transgenic barley with overexpressed PTrx increases aluminum resistance in roots during germination. J Zhejiang Univ Sci B 11:862–870

    PubMed  CAS  Google Scholar 

  • Li G, Nasar V, Yang Y, Li W, Liu B, Sun L, Li D, Song F (2011) Arabidopsis poly(ADP-ribose) glycohydrolase 1 is required for drought, osmotic and oxidative stress responses. Plant Sci 180:283–291

    PubMed  CAS  Google Scholar 

  • Li CW, Lee SH, Chieh PS, Lin CS, Wang YC, Chan MT (2012a) Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress. Plant Cell Physiol 53:1707–1719

    PubMed  CAS  Google Scholar 

  • Li F, Wu QY, Duan M, Dong XC, Li B, Meng QW (2012b) Transgenic tomato plants overexpressing chloroplastic monodehydroascorbate reductase are resistant to salt- and PEG-induced osmotic stress. Photosynthetica 50:120–128

    CAS  Google Scholar 

  • Li M, Li Z, Li S, Guo S, Meng Q, Li G, Yang X (2013) Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Mol Biol Rep 1–10. DOI:10.1007/s11105-013-0594-z

  • Liang Zhu Y, Pilon-Smits EA, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    PubMed  Google Scholar 

  • Liangqi W, Zhanmin F, Lei G, Yongqing L, Wenjing Z, Li-Jia Q, Zhangliang C (2003) Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice. Chin Sci Bull 48:2594–2600

    Google Scholar 

  • Liedschulte V, Wachter A, Zhigang A, Rausch T (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8:807–820

    PubMed  CAS  Google Scholar 

  • Lim CE, Choi JN, Kim IA, Lee SA, Hwang YS, Lee CH, Lim J (2008) Improved resistance to oxidative stress by a loss-of-function mutation in the Arabidopsis UGT71C1 gene. Mol Cells 25:368–375

    PubMed  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    PubMed  CAS  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    PubMed  CAS  Google Scholar 

  • Ma L, Zhou E, Gao L, Mao X, Zhou R, Jia J (2008) Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). S Afr J Bot 74:705–712

    CAS  Google Scholar 

  • Maeda H, Sakuragi Y, Bryant DA, Dellapenna D (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422–1435

    PubMed  CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49

    CAS  Google Scholar 

  • Matsumuraa T, Tabayashib N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice plants can improve tolerance against low temperature injury. Physiol Plant 116:317–327

    Google Scholar 

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–848

    PubMed  CAS  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    PubMed  CAS  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    PubMed  CAS  Google Scholar 

  • Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86:419–433

    PubMed  CAS  Google Scholar 

  • Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160

    PubMed  CAS  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    PubMed  CAS  Google Scholar 

  • Milligan AS, Daly A, Parry MAJ, Lazzeri PA, Jepson I (2001) The expression of a maize glutathione S-transferase gene in transgenic wheat confers herbicide tolerance, both in planta and in vitro. Mol Breed 7:301–315

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  • Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M (2000) Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization. Plant Physiol 124:1381–1392

    PubMed  CAS  Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takab T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1:49–55

    Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    PubMed  CAS  Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in Chickpea. J Agron Crop Sci 190:355–365

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    PubMed  CAS  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    PubMed  CAS  Google Scholar 

  • Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovacs I, Feher A, Dudits D, Horvath GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24:437–446

    PubMed  CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38:1118–1126

    PubMed  CAS  Google Scholar 

  • Oh SK, Baek KH, Seong ES, Joung YH, Choi GJ, Park JM, Cho HS, Kim EA, Lee S, Choi D (2010) CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol 154:245–261

    PubMed  CAS  Google Scholar 

  • op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    PubMed  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjarvi J (2000) Ozone-sensitive arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    PubMed  CAS  Google Scholar 

  • Panieri E, Gogvadze V, Norberg E, Venkatesh R, Orrenius S, Zhivotovsky B (2013) Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic Biol Med 57:176–187

    PubMed  CAS  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang Z (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT, Murata N, Chen TH (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    PubMed  CAS  Google Scholar 

  • Park S, Lee D-E, Jang H, Byeon Y, Kim Y-S, Back K (2013) Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J Pineal Res 54:258–263

    PubMed  CAS  Google Scholar 

  • Perez-Perez ME, Lemaire SD, Crespo JL (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164

    PubMed  CAS  Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet 85:568–576

    PubMed  CAS  Google Scholar 

  • Poage M, Le Martret B, Jansen MA, Nugent GD, Dix PJ (2011) Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol Biol 76:371–384

    PubMed  CAS  Google Scholar 

  • Polidoros AN, Mylona PV, Scandalios JG (2001) Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Res 10:555–569

    PubMed  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    PubMed  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MA (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    PubMed  Google Scholar 

  • Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    PubMed  CAS  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    PubMed  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    PubMed  CAS  Google Scholar 

  • Qureshi M, Radeva V, Genkov T, Minkov I, Hille J, Gechev T (2011) Isolation and characterization of Arabidopsis mutants with enhanced tolerance to oxidative stress. Acta Physiol Plant 33:375–382

    CAS  Google Scholar 

  • Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    PubMed  CAS  Google Scholar 

  • Raychaudhuri SS, Deng XW (2000) The role of superoxide dismutase in combating oxidative stress in higher plants. Bot Rev 66:89–98

    Google Scholar 

  • Reddy AM, Reddy VS, Scheffler BE, Wienand U, Reddy AR (2007) Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab Eng 9:95–111

    PubMed  CAS  Google Scholar 

  • Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615

    PubMed  CAS  Google Scholar 

  • Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M (2004) Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiol 136:3784–3794

    PubMed  CAS  Google Scholar 

  • Rouhier N (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol 186:365–372

    PubMed  CAS  Google Scholar 

  • Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991

    PubMed  CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    PubMed  CAS  Google Scholar 

  • Sarowar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK, Shin JS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci 169:55–63

    CAS  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211

    PubMed  CAS  Google Scholar 

  • Shao H, Chu LY, Lu ZH, Kang CM (2007) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    PubMed  Google Scholar 

  • Shah K, Singh M, Rai AC (2013) Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Phytochemistry 95:109–117

    PubMed  CAS  Google Scholar 

  • Sharov VS, Schoneich C (2000) Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase. Free Radic Biol Med 29:986–994

    PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    PubMed  CAS  Google Scholar 

  • Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells 27:67–74

    PubMed  CAS  Google Scholar 

  • Shirasawa K, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2007) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, Oxford, UK, pp 53–86

    Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    CAS  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    CAS  Google Scholar 

  • Sundaram S, Wu S, Ma LQ, Rathinasabapathi B (2009) Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32:851–858

    PubMed  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    PubMed  CAS  Google Scholar 

  • Takesawa T, Ito M, Hiroyuki Kanzaki H, Kameya N, Nakamura I (2002) Over-expression of ζ glutathione S-transferase in transgenic rice enhances germination and growth at low temperature. Mol Breed 9:93–101

    CAS  Google Scholar 

  • Teotia S, Lamb RS (2009) The paralogous genes RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. Plant Physiol 151:180–198

    PubMed  CAS  Google Scholar 

  • Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Res 13:225–233

    PubMed  CAS  Google Scholar 

  • Tseng M-J, Liu C-W, Yiu J-C (2008) Tolerance to sulfur dioxide in transgenic Chinese cabbage transformed with both the superoxide dismutase containing manganese and catalase genes of Escherichia coli. Sci Hortic 115:101–110

    CAS  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    PubMed  CAS  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    PubMed  CAS  Google Scholar 

  • Tuteja N, Ahmad P, Panda BB, Tuteja R (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681:134–149

    PubMed  CAS  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    PubMed  CAS  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    PubMed  Google Scholar 

  • Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ, Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    PubMed  CAS  Google Scholar 

  • Verdoy D, Coba De La Peña T, Redondo FJ, Lucas MM, Pueyo JJ (2006) Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ 29:1913–1923

    PubMed  CAS  Google Scholar 

  • Vianello A, Zancani M, Nagy G, Macri F (1997) Guaiacol peroxidase associated to soybean root plasma membranes oxidizes ascorbate. J Plant Physiol 150:5–5

    Google Scholar 

  • Vieyra FE, Boggetti HJ, Zampini IC, Ordonez RM, Isla MI, Alvarez RM, De Rosso V, Mercadante AZ, Borsarelli CD (2009) Singlet oxygen quenching and radical scavenging capacities of structurally-related flavonoids present in Zuccagnia punctata Cav. Free Radic Res 43:553–564

    PubMed  Google Scholar 

  • Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Nicholas Hewitt C (2009) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    PubMed  CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    CAS  Google Scholar 

  • Wan X, Tan J, Lu S, Lin C, Hu Y, Guo Z (2009) Increased tolerance to oxidative stress in transgenic tobacco expressing a wheat oxalate oxidase gene via induction of antioxidant enzymes is mediated by H2O2. Physiol Plant 136:30–44

    PubMed  CAS  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    PubMed  CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    PubMed  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    CAS  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    PubMed  CAS  Google Scholar 

  • Wang J, Fan Z, Liu Z, Xiang J, Chai L, Li X, Yang Y (2011) Thylakoid-bound ascorbate peroxidase increases resistance to salt stress and drought in Brassica napus. Afr J Biotechnol 10:8039–8045

    CAS  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    PubMed  CAS  Google Scholar 

  • Wi S, Kim W, Park K (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    PubMed  CAS  Google Scholar 

  • Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932

    PubMed  CAS  Google Scholar 

  • Wu Q, Lin J, Liu JZ, Wang X, Lim W, Oh M, Park J, Rajashekar CB, Whitham SA, Cheng NH, Hirschi KD, Park S (2012) Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnol J 10:945–955

    PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309

    PubMed  CAS  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    PubMed  CAS  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33

    PubMed  CAS  Google Scholar 

  • Yu D, Xie Z, Chen C, Fan B, Chen Z (1999) Expression of tobacco class II catalase gene activates the endogenous homologous gene and is associated with disease resistance in transgenic potato plants. Plant Mol Biol 39:477–488

    PubMed  CAS  Google Scholar 

  • Yu T, Li YS, Chen XF, Hu J, Chang X, Zhu YG (2003) Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methyl viologen. J Plant Physiol 160:1305–1311

    PubMed  CAS  Google Scholar 

  • Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23:289–298

    CAS  Google Scholar 

  • Zhang C-J, Zhao B-C, Ge W-N, Zhang Y-F, Song Y, Sun D-Y, Guo Y (2011) An apoplastic H-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol 157:1884–1899

    PubMed  CAS  Google Scholar 

  • Zhao Q, Wang G, Ji J, Jin C, Wu W, Zhao J (2013) Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco. J Plant Biochem Biotechnol 1–9. DOI: 10.1007/s13562-013-0201-2

  • Zhou X, Hua D, Chen Z, Zhou Z, Gong Z (2009) Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. Plant J 60:79–90

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Teotia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Teotia, S., Singh, D. (2014). Oxidative Stress in Plants and Its Management. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_13

Download citation

Publish with us

Policies and ethics