Skip to main content

Integrated Management of Polluted Soils for Enhancing Productivity and Quality of Crops

  • Chapter
  • First Online:

Abstract

Soil quality is severely affected due to contamination with salts, toxic metals, non-metals and organic pollutants generated from mainly urban and industrial activities and therefore needs to be managed appropriately for sustaining agricultural productivity. Deterioration in soil quality in the polluted agricultural land can be ascertained through measurement of different physical, chemical and biological indicators. While salts affect crop productivity by degrading rhizosphere environment, heavy metals express toxicity on plant growth and on activities of agriculturally important microflora and fauna and also contaminate food. Although adverse effect of organic pollutants in soil on plant growth and produce quality has not been found significant, these are reported to affect soil microbe activity and therefore are required to be decontaminated. The role of different agricultural operations on countering the adverse effects of soil pollution has been discussed, and different soil and crop management, tillage, nutrient management, water management and soil conservation measures have been suggested for improving productivity of crops, quality of food and environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ, Feldmann J et al (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    PubMed  CAS  Google Scholar 

  • Adhikari T, Biswas AK et al (2012) Heavy metal pollution in soil-plant system and its remediation. IISS technical bulletin. Indian Institute of Soil Science, Bhopal, pp 1–57

    Google Scholar 

  • Akerblom S, Baath E et al (2007) Experimentally induced effects of heavy metals on microbial activity and community structure of forest mor layers. Biol Fertil Soils 44:79–91

    Google Scholar 

  • Andrews SS, Carroll CR (2001) Designing a decision tool for sustainable agroecosystem management: soil quality assessment of a poultry litter management case study. Ecol Appl 11:1573–1585

    Google Scholar 

  • Angelova V, Ivanova R et al (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crop Prod 19:197–205

    CAS  Google Scholar 

  • ATSDR (2005) Toxicological profile for nickel. Agency for Toxic Substances and Disease Registry, U.S. Department of Health And Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Ayed L, Mahdhi A et al (2011) Decolorization and degradation of azo dye methyl red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274:272–277

    CAS  Google Scholar 

  • Balakrishnan M, Antony SA et al (2008) Impact of dyeing industrial effluents on the groundwater quality in Kancheepuram (India). Indian J Sci Technol 1:1–8

    Google Scholar 

  • Baran S, Bielińska JE et al (2004) Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118:221–232

    CAS  Google Scholar 

  • Battigelli JP, Marshall VG (1993) Relationship between soil fauna and soil pollutants. In: Proceedings of the forest ecosystem dynamics workshop. FRDA II repost 210. Government of Canada Province of British Columbia, p 31, 10–11 Feb 1993

    Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants. Gustav Fischer, Jena/Stuttgart/New York

    Google Scholar 

  • Broadley MR, Willey NJ et al (1999) A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environ Pollut 106:341–349

    PubMed  CAS  Google Scholar 

  • Brookes PC, McGrath SP (1984) The effects of metal toxicity on the size of soil microbial biomass. J Soil Sci 35:341–346

    CAS  Google Scholar 

  • Brookes PC, McGrath SP et al (1986) Metal residues in soils previously treated with sewage-sludge and their effects on growth and nitrogen fixation by blue green algae. Soil Biol Biochem 18:345–353

    CAS  Google Scholar 

  • Brown MA, De Vito SC (1993) Predicting azo dye toxicity. Crit Rev Env Sci Tec 23:249–324

    CAS  Google Scholar 

  • Cámara B, Herrera C et al (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850

    PubMed  Google Scholar 

  • Chan DY, Hale BA (2004) Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation. J Exp Bot 55:2571–2579

    PubMed  CAS  Google Scholar 

  • Chaudri AM, McGrath SP et al (1993) Enumeration of indigenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal –contaminated sewage-sludge. Soil Biol Biochem 25:301–309

    CAS  Google Scholar 

  • Chekol T, Vough LR et al (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30:799–804

    PubMed  CAS  Google Scholar 

  • Cook LL, Inouye RS et al (2009) Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 324:169–184

    CAS  Google Scholar 

  • Coover MP, Sims RC (1987) The effect of temperature on polycyclic aromatic hydrocarbon persistence in an unacclimated agricultural soil. Hazard Waste Hazard Mat 4:69–82

    CAS  Google Scholar 

  • Correa PA, Lin L et al (2010) The effects of individual PCB congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes. Environ Int 36:901–906

    PubMed  CAS  Google Scholar 

  • Cousins IT, Mclachlan MS et al (1998) Lack of an aging effect on the soil – air partitioning of polychlorinated biphenyls. Environ Sci Technol 32:2734–2740

    CAS  Google Scholar 

  • Cunningham SD, Berti WR et al (1995) Phytoremediation of contaminated soils. Biotech 13:393–397

    CAS  Google Scholar 

  • Dawe D, Dobermann A et al (2000) How widespread are yield declines in long-term rice experiments in Asia? Field Crop Res 66:175–193

    Google Scholar 

  • Delschen T (1999) Impacts of long-term application of organic fertilizers on soil quality parameters in reclaimed loess soils of the Rhineland lignite mining area. Plant Soil 213:43–54

    CAS  Google Scholar 

  • Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988

    Google Scholar 

  • DTE (1999) Bloody waters. Down to earth, Issue 1–15 Apr 1999. Society for Environmental Communications, New Delhi. http://www.downtoearth.org.in/node/19679

  • Düring RA, Gäth S (2002) Utilization of municipal organic wastes in agriculture: where do we stand, where do we go? J Plant Nutr Soil Sci 165:544–556

    Google Scholar 

  • Eitminaviciute I (2006) Microarthropod communities in anthropogenic urban soils. 1. Structure of microarthropod complexes in soils of roadside lawns. Entomol Rev 86:128–135

    Google Scholar 

  • Ellwardt P (1977) Variation in content of polycyclic aromatic hydrocarbons in soil and plants by using municipal waste compost in agriculture. In: Proceedings of the symposium on soil organic matter studies, vol II. International Atomic Energy Agency, Vienna, p 291

    Google Scholar 

  • Fayiga AO, Ma LQ (2006) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 359:17–25

    PubMed  CAS  Google Scholar 

  • Filip Z (1998) An internationally based approach to assess soil quality by biological methods. In: Proceedings of the 16th world congress of soil science, Paper no 2041, Montpellier

    Google Scholar 

  • Folch I, Vaquero MT et al (1996) Extraction and clean-up methods for improvement of the chromatographic determination of polychlorinated biphenyls in sewage sludge-amended soils: elimination of lipids and sulphur. J Chromatogr A 719:121–130

    CAS  Google Scholar 

  • Gan R, Berthouex P (1994) Disappearance and crop uptake of PCBs from sludge amended farming. Water Environ Res 66:54–69

    CAS  Google Scholar 

  • Ghanem A, D’Orazio V et al (2010) Phytotoxicity assay of selected plants to Pyrene contaminated soil. In: Proceedings of the nineteenth world congress of soil science, soil solutions for a changing world, Brisbane. Published on DVD, pp 74–77, 1–6 Aug 2010

    Google Scholar 

  • Gongalsky KB, Filimonova ZV et al (2010) Relationship between soil invertebrate abundance and soil heavy metal contents in the environs of the Kosogorsky metallurgical plant, Tula Oblast. Russ J Ecol 41:67–70

    Google Scholar 

  • Grossi G, Lichtig J et al (1998) PCDD/F, PCB, and PAH content of Brazilian compost. Chemosphere 37:2153–2160

    PubMed  CAS  Google Scholar 

  • Hickey WJ (1999) Transformation and fate of polychlorinated biphenyls in soil and sediment. In: Adriano DC et al (eds) Bioremediation of contaminated soils, vol 37, Agronomy Monograph. ASA, CSSA and SSSA, Madison, pp 213–237

    Google Scholar 

  • Hirano T, Tamae K (2011) Earthworms and soil pollutants. Sensors 11:11157–11167

    PubMed  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agr Ecosyst Environ 103:1–25

    Google Scholar 

  • Hu T, Wu SC (2001) Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium – Anabaena sp. Bioresour Technol 77:93–95

    PubMed  CAS  Google Scholar 

  • Huang JW, Chen J et al (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Huang X, El-Alawi Y et al (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    PubMed  CAS  Google Scholar 

  • Huq SMI, Joardar JC et al (2006) Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation. J Health Popul Nutr 24:305–316

    PubMed  Google Scholar 

  • Indoria AK, Poonia SR (2006) Phytoextractability of lead from soil by some oilseed crops as affected by sewage sludge and farmyard manure. Arch Agron Soil Sci 52:667–677

    CAS  Google Scholar 

  • Jain N, Bhatia A et al (2005) Impact of post-methanation distillery effluent irrigation on groundwater quality. Environ Monit Assess 110:243–255

    PubMed  CAS  Google Scholar 

  • Johnsena AR, Wickb LY et al (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    CAS  Google Scholar 

  • Kalyani DC, Patil PS et al (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641

    PubMed  CAS  Google Scholar 

  • Karlen DL, Mausbach MJ et al (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    CAS  Google Scholar 

  • Keharia H, Madamwar D (2003) Bioremediation concepts for treatment of dye containing wastewater: a review. Indian J Exp Biol 41:1068–1075

    PubMed  CAS  Google Scholar 

  • Khehra MS, Saini HS et al (2006) Biodegradation of azo dye C.I. Acid red 88 by an anoxic–aerobic sequential bioreactor. Dyes Pigments 70:1–7

    CAS  Google Scholar 

  • Kuperman RG, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190

    CAS  Google Scholar 

  • Kurtyka R, Małkowski E et al (2008) Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Pol J Environ Stud 17:51–56

    CAS  Google Scholar 

  • Lee PH, Ong SK et al (2001) Use of solvents to enhance PAH biodegradation of coal tar. Water Res 35:3941–3949

    PubMed  CAS  Google Scholar 

  • Levi-Minzi R, Petruzzelli G (1984) The influence of phosphate fertilizers on Cd solubility in soil. Water Air Soil Pollut 23:423–429

    CAS  Google Scholar 

  • Liu Y, Kong GT et al (2007) Effects of soil properties on heavy metal accumulation in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) in Pearl River Delta, China. J Environ Sci Heal B 42:219–227

    CAS  Google Scholar 

  • Lo’pez-Chuken UJ, Lo’pez-Domı’nguez U et al (2012) Implications of chloride-enhanced cadmium uptake in saline agriculture: modeling cadmium uptake by maize and tobacco. Int J Environ Sci Technol 9:69–77

    Google Scholar 

  • Luqueño FF, Marsch R et al (2008) Remediation of PAHs in a saline–alkaline soil amended with wastewater sludge and the effect on dynamics of C and N. Sci Total Environ 402:18–28

    Google Scholar 

  • Maas EV (1993) Testing crops for salinity tolerance. In: Proceedings of the workshop on adaptation of plants to soil stresses, Maranville JW, BaIigar BV, Duncan RR, Yohe JM (eds) INTSORMIL. Pub no 94–2, Univ of Ne, Lincoln, pp 234–247, l–4 Aug 1993

    Google Scholar 

  • Maliwal GL, Somani LL (2010) Nature, properties and management of saline and alkali soils. Agrotech Publishing Academy, Udaipur. ISBN 976-81-8321-177-2

    Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, SpringerBriefs in molecular science. Springer, Netherlands pp 27–53

    Google Scholar 

  • Margesin R, Walder G et al (2000) The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol 20:313–333

    CAS  Google Scholar 

  • Mårtensson AM, Witter E (1990) Influence of various soil amendments on nitrogen fixing soil organisms in a long-term field experiments, with special reference to sewage sludge. Soil Biol Biochem 22:977–982

    Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • McBride MB (1995) Toxic metal accumulation from agricultural use of sludge: are U.S. EPA regulations protective? J Environ Qual 24:5–18

    CAS  Google Scholar 

  • McBride MB, Pitiranggon M et al (2009) A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil. Soil Sci 174:439–444

    CAS  Google Scholar 

  • McGrath SP (1993) Soil quality in relation to agricultural use. In: Eijsackers HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer, Dordrecht, pp 187–200

    Google Scholar 

  • McGrath SP, Chang AC et al (1994) Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States. Environ Rev 2:108–118

    CAS  Google Scholar 

  • McMullan G, Meehan C et al (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotech 56:81–87

    CAS  Google Scholar 

  • Meers E, Samson R et al (2007) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation in Phaseolus vulgaris. Environ Exp Bot 60:385–396

    CAS  Google Scholar 

  • Meers E, Slycken SV et al (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    PubMed  CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    PubMed  CAS  Google Scholar 

  • Mello- Farias PC, Chaves ALS et al (2011) Transgenic plants for enhanced phytoremediation – physiological studies, genetic transformation. In: Alvarez M (ed) ISBN: 978-953-307-364-4, InTech, Available from http://www.intechopen.com/books/genetictransformation/transgenic-plants-for-enhanced-phytoremediation-physiological-studies

  • Menzies NW, Donn MJ et al (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145:121–130

    PubMed  CAS  Google Scholar 

  • Mondal NC, Saxena VK et al (2005) Assessment of groundwater pollution due to tannery industries in and around Dindigul, Tamilnadu, India. Environ Geol 48:149–157

    CAS  Google Scholar 

  • Mukherjee S, Nelliyat P (2007) Groundwater pollution and emerging environmental challenges of industrial effluent irrigation in Mettupalayam Taluk, Tamil Nadu. In: Comprehensive assessment of water management in agriculture discussion paper 4, International Water Management Institute, Colombo, p 51

    Google Scholar 

  • NAAS (2012) Sustaining agricultural productivity through integrated soil management. Policy paper no 56, National Academy of Agricultural Sciences, New Delhi, p 24

    Google Scholar 

  • Nigam P, Armour G et al (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour Technol 72:219–226

    CAS  Google Scholar 

  • Nigam R, Srivastava S et al (2001) Cadmium mobilisation and plant availability – the impact of organic acids commonly exuded from roots. Plant and Soil 230:107–113

    CAS  Google Scholar 

  • Nowack B, Schulin R et al (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    PubMed  CAS  Google Scholar 

  • O’Connor GA (1996) Organic compounds in sludge-amended soils and their potential uptake by crop plants. Sci Total Environ 185:71–81

    PubMed  Google Scholar 

  • Oleszczuk P, Baran S (2003) Degradation of individual polycyclic aromatic hydrocarbons (PAHs) in soil polluted with aircraft fuel. Pol J Environ Stud 12:431–437

    CAS  Google Scholar 

  • Oliver DP, Schultz JE, Tiller KG, Merry RH (1993) The effect of crop rotations and tillage practices on cadmium concentration in wheat grain. Aust J Agr Res 44:1221–1234

    Google Scholar 

  • Olson PE, Castro A et al (2008) Effects of agronomic practices on phytoremediation of an aged PAH-contaminated soil. J Environ Qual 37:1439–1446

    PubMed  CAS  Google Scholar 

  • Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298

    CAS  Google Scholar 

  • Page AL, Logan TJ et al (1987) Land application of sludge: food chain implications. Lewis Publications, Chelsea

    Google Scholar 

  • Panwar NR, Saha JK et al (2010) Soil and water pollution in India: some case studies. IISS technical bulletin. Indian Institute of Soil Science, Bhopal

    Google Scholar 

  • Parker DR, Pedler JF (1997) Reevaluating the free-ion activity model of trace metal availability to higher plants. Plant Soil 196:223–238

    CAS  Google Scholar 

  • Pathak H, Rao DLN (1998) Carbon and nitrogen mineralisation from added organic matter in saline and alkali soils. Soil Biol Biochem 30:695–702

    CAS  Google Scholar 

  • Peijnenburg WJGM, Baerselman R et al (1999) Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the Oligochaete Eisenia Andrei. Ecotox Environ Safe 44:294–310

    CAS  Google Scholar 

  • Pigna M, Cozzolino V et al (2010) Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J Soil Sci Plant Nutr 10:428–442

    Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biot 57:20–33

    CAS  Google Scholar 

  • Puvaneswari N, Muthukrishnan J et al (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618–626

    PubMed  CAS  Google Scholar 

  • Quinn JJ, Negri CM et al (2001) Predicting the effect of deep-rooted hybrid poplars on the groundwater flow system at a large scale phytoremediation site. Int J Phytoremediat 3:41–60

    CAS  Google Scholar 

  • Ramana S, Biswas AK et al (2009) Phytoremediation of cadmium contaminated soils by marigold and chrysanthemum. Natl Acad Sci Lett 32:333–336

    CAS  Google Scholar 

  • Reilley KA, Banks MK et al (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25:212–219

    CAS  Google Scholar 

  • Rhykerd RL, Crews B et al (1999) Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Bioresour Technol 67:279–285

    CAS  Google Scholar 

  • Rooney CP, Zhao F et al (2007) Phytotoxicity of nickel in a range of European soils: influence of soil properties, Ni solubility and speciation. Environ Pollut 145:596–605

    PubMed  CAS  Google Scholar 

  • Ruttens A, Boulet J et al (2011) Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int J Phytoremediat 13:194–207

    Google Scholar 

  • Saha JK (2005) Changes in salinity and sodicity of soils with continuous application of contaminated water near industrial area. J Indian Soc Soil Sci 53:612–617

    CAS  Google Scholar 

  • Saha JK, Sharma AK (2006) Impact of the use of polluted irrigation water on soil quality and crop productivity near Ratlam and Nagda industrial area, Agricultural bulletin IISS-1. Indian Institute of Soil Science, Bhopal

    Google Scholar 

  • Saha JK, Panwar N et al (2010) An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag 30:192–201

    PubMed  CAS  Google Scholar 

  • Saha JK, Panwar N et al (2013) Risk assessment of heavy metals in soil of a susceptible agro-ecological system amended with municipal solid waste compost. J Indian Soc Soil Sci 61(1):15–22

    Google Scholar 

  • Salminen J, Van Gestel CAM et al (2001) Pollution-induced community tolerance and functional redundancy in a decomposer food web in metal stressed soil. Environ Toxicol Chem 20:2287–2295

    PubMed  CAS  Google Scholar 

  • Santodonato J, Howard P et al (1981) Health and ecological assessment of polynuclear aromatic hydrocarbons. J Environ Pathol Tox 5:1–364

    CAS  Google Scholar 

  • Santorufo L, Cornelis AM et al (2012) Soil invertebrates as bioindicators of urban soil quality. Environ Pollut 161:57–63

    PubMed  CAS  Google Scholar 

  • Saratale RG, Saratale GD et al (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegrad 21:999–1015

    CAS  Google Scholar 

  • Sayara T, Pognani M et al (2010) Anaerobic degradation of PAHs in soil: impacts of concentration and amendment stability on the PAHs degradation and biogas production. Int Biodeter Biodegr 64:286–292

    CAS  Google Scholar 

  • Schindler PW, Sposito G (1991) Surface complexation at (hydr)oxide surfaces. In: Bolt GHEA (ed) Interactions at the soil colloid-soil solution interface. Kluwer, Dordrecht, pp 115–145

    Google Scholar 

  • Sellamuthu KM, Mayilswami C et al (2011) Effect of textile and dye industrial pollution on irrigation water quality of Noyyal River Basin of Tamil Nadu. Madras Agric J 98:129–135

    Google Scholar 

  • Shanker AK, Cervantes C et al (2005) Chromium toxicity in plants. Environ Int 31:739–753

    PubMed  CAS  Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    PubMed  CAS  Google Scholar 

  • Silva CMMS, Fay EF (2012) Effect of salinity on soil microorganisms. In: Hernandez-Soriano MC (ed) Soil health and land use management, ISBN 978-953-307-614-0, doi: 10.5772/28613. Intech (Available from http://www.intechopen.com/books/soil-health-and-land-usemanagement/effect-of-salinity-on-soil-microorganisms)

  • Simonich SL, Hites RA (1994) Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 370:49–51

    CAS  Google Scholar 

  • Singh OV, Labana S et al (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biot 61:405–412

    CAS  Google Scholar 

  • Skłodowski P, Maciejewska A et al (2006) The effect of organic matter from brown coal on bioavailability of heavy metals in contaminated soils. Soil Water Pollut Monit Protec Remed 69:299–307

    Google Scholar 

  • Somasundaram MV, Ravindran G et al (1993) Ground-water pollution of the Madras urban aquifer, India. Ground Water 31:4–11

    CAS  Google Scholar 

  • Sparrow LA, Salardini AA et al (1994) Field studies of cadmium in potatoes (Solanum tuberosum L.). III. Response of cv. Russet Burbank to sources of banded potassium. Aust J Agr Res 45:243–249

    CAS  Google Scholar 

  • Su DC, Wong JWC (2004) Selection of mustard oilseed rape (Brassica juncea L.) for phytoremediation of cadmium contaminated soil. Bull Environ Contam Toxicol 72:991–998

    PubMed  CAS  Google Scholar 

  • Sullivan DM, Miller RO (2001) Compost quality attributes, measurements, and variability. In: Stoffella PJ, Kahn BA (eds) Compost utilization in horticultural cropping systems. Lewis Publishers, New York, pp 97–120

    Google Scholar 

  • Suzuki N (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotech 22:19–25

    CAS  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, Chemical and microbiological properties, Agronomy Monograph no 9. ASA-SSSA, Madison, pp 903–947

    Google Scholar 

  • Teng Y, Luo Y et al (2010) Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Int J Phytoremediat 12:516–533

    CAS  Google Scholar 

  • Thomas W (1986) Accumulation of airborne trace pollutants by arctic plants and soil. Water Sci Technol 18:47–57

    CAS  Google Scholar 

  • Topaç FO, Dindar E, Uçaroğlu S, Başkaya HS (2009) Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil. J Hazard Mater 170:1006–1013

    PubMed  Google Scholar 

  • Tripathi S, Chakrabarty A et al (2007) Enzyme activities and microbial biomass in coastal soils of India. Soil Biol Biochem 39:2840–2848

    CAS  Google Scholar 

  • Trzesicka-Mlynarz D, Ward OP (1995) Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41:470–476

    PubMed  CAS  Google Scholar 

  • Turrio-Baldassarri L, Abate V et al (2007) A study on PCB, PCDD/PCDF industrial contamination in a mixed urban-agricultural area significantly affecting the food chain and the human exposure. Part I: Soil and feed. Chemosphere 67:1822–1830

    PubMed  CAS  Google Scholar 

  • Tyler G (1981) Heavy metals in soil biology and biochemistry. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 371–414

    Google Scholar 

  • Vangronsveld J, Cunningham SD (eds) (1998) Metal-contaminated soils: in situ inactivation and phytorestoration. Springer-Verlag/R G Landes, Georgetown

    Google Scholar 

  • Varvel GE, Riedell WE et al (2006) Great plains cropping system studies for soil quality assessment. Renew Agric Food Syst 21:3–14

    Google Scholar 

  • Walker DJ, Clemente R et al (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224

    PubMed  CAS  Google Scholar 

  • Wang KR (2002) Tolerance of cultivated plants to cadmium and their utilization in polluted farmland soils. Acta Biotechnol 22:189–198

    Google Scholar 

  • Wang S, Mulligan CN (2004) Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water Air Soil Pollut 157:315–330

    CAS  Google Scholar 

  • Webber MD, Pietz RI et al (1990) Plant uptake of PCBs and other organic contaminants from sludge-treated coal refuse. J Environ Qual 23:1019–1026

    Google Scholar 

  • Weissenfels WD, Klewer H et al (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biot 36:689–696

    CAS  Google Scholar 

  • Wetzel A, Werner D (1995) Ecotoxicological evaluation of contaminated soil using the legume root nodule symbiosis as effect parameter. Environ Toxic Water Qual 10:127–133

    CAS  Google Scholar 

  • White CM, Lee ML (1980) Identification and geochemical significance of some aromatic components of coal. Geochim Cosmochim Acta 44:1825–1832

    CAS  Google Scholar 

  • Willaert G, Verloo M (1992) Effect of various nitrogen fertilizers on the chemical and biological activity of major and trace elements in a cadmium contaminated soil. Pedologie 43:83–91

    Google Scholar 

  • Yang Z, Liu S et al (2006) Effects of cadmium, zinc and lead on soil enzyme activities. J Environ Sci 18:1135–1141

    Google Scholar 

  • Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulphate level. J Plant Physiol 143:8–14

    CAS  Google Scholar 

  • Zhou Q (2001) Chemical pollution and transport of organic dyes in water-soil-crop system of the Chinese coasts. Bull Environ Contam Toxicol 66:784–793

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Saha, J.K., Rao, A.S., Mandal, B. (2014). Integrated Management of Polluted Soils for Enhancing Productivity and Quality of Crops. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_1

Download citation

Publish with us

Policies and ethics