Skip to main content

Nanotechnology: Perspective for Environmental Sustainability

  • Chapter
  • First Online:

Abstract

“Environmental nanotechnology” is considered to play a key role in the shaping of current environmental engineering and science. The conventional environmental remedial techniques seem to be relatively ineffectual in the face of currently extensively expanding load of pollutants that permeate the air, water, and soil environment. Nanotechnology can provide a way to purify the air and water resources by utilizing nanoparticles as a catalyst and/or sensing systems. In the present research chapter, the potential of nanotechnological products and processes and their application to clean up the environment contaminants have been discussed. Water treatment and purification techniques based on nanotechnology have been highlighted. These also include the environmental and energy application of nanotechnology which focuses on clean technology, reducing global warming, eco-friendly and efficient energy-generating techniques, eco-friendly surface coating, remediation techniques, and environmental monitoring. Environmental nanoscience products, devices, and processes have an impact on socioeconomic aspects for maintaining a clean environment for sustainable development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah AH, Ali NM, Tahir MIM (2009) Synthesis of bismuth vanadate as visible-light photocatalyst. Malays J Anal Sci 13:151–157

    Google Scholar 

  • Adachi K, Ohta K, Mizuno T (1994) Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol Energ 53:187–190

    Article  CAS  Google Scholar 

  • Allchin D (2008) Nobel ideals and noble errors. Am Biol Teacher 70(8):489–492 (BioOne)

    Article  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Tag Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–227. doi:10.1126/science.1061051

    Article  CAS  Google Scholar 

  • Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energ 77:445–459

    Article  CAS  Google Scholar 

  • Bruns B (2000) Nanotechnology and the commons: implications of open source abundance in millennial quasi-commons. http://www.cm.ksc.co.th/~bruns/opennan2.htm. Accessed 26 Nov 2002

  • Cao J, Elliott D, Zhang W-X (2005) Perchlorate reduction by nanoscale iron particles. J Nanoparticle Res 7(4–5):499–506

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–117

    Article  CAS  Google Scholar 

  • Carvajal AR (2004) Methodological approach for the assessment of technology from a sustainability perspective. M.Sc. thesis at the Technical University of Freiberg, Germany in cooperation with the Wuppertal Institute

    Google Scholar 

  • Cheng SH, Cheng J (2005) Carbon nanotubes delay slightly the hatching time of zebrafish embryos. 229th American Chemical Society meeting, San Diego

    Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 10:1166–1170

    Article  Google Scholar 

  • Court E, Daar AS, Martin E, Acharya T, Singer PA (2004) Will Prince Charles et al diminish the opportunities of developing countries in nanotechnology? http://nanotechweb.org/cws/article/indepth/18909

  • Diallo MS (2008) Water treatment by dendrimer enhanced filtration. US Patent, 7,470,369

    Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Johnson JH Jr, Goddard WA III (2005) Dendrimer-enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using Gx-NH2 PAMAM dendrimers with ethylene diamine core. Environ Sci Technol 39(5):1366–1377

    Article  CAS  Google Scholar 

  • Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv Mater 11:1354

    Article  CAS  Google Scholar 

  • Drexler EK, Peterson C, Pergamit G (1991) (Online) http://www.foresight.org/UTF/Unbound_LBW/chapt_9.html. Accessed 26 Nov 2002

  • Elliott D, Zhang W (2001) Field assessment of nanoparticles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Google Scholar 

  • Elvin G (2007) Nanotechnology for green buildings. Green Technology forum US, Indianapolis. http://www.nsti.org/BioNano2007/showabstract.html?absno=3026

  • Fujiokya Y, Yamada K, Kazama S, Yogo K, Kai T et al (2007) In development of innovative gas separation membranes through sub-nano scale materials control. Research symposium presentation. Research Institute of Innovative Technology for the Earth (RITE)

    Google Scholar 

  • Fujishima A, Hashimoto K, Watanabe T (1999) Tio2 photocatalysis. Fundamentals and applications. BKC, Tokyo

    Google Scholar 

  • Glazier R, Venkatakrishnan R, Gheorghiu F, Walata L, Nash R, Zhang W (2003) Nanotechnology takes root. Civil Eng 73(5):64–69

    Google Scholar 

  • Gotic M, Music S, Ivanda M et al (2005) Synthesis and characterisation of bismuth(III) vanadate. J Mol Struct 744:535–540

    Article  Google Scholar 

  • Henn KW, Waddill DW (2006) Utilization of nanoscale zero-valent iron for source remediation – a case study. Remediation 16(2):57–77

    Article  Google Scholar 

  • Hiroshi I, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B 107(23):5483–5486. doi:10.1021/jp030133h

    Google Scholar 

  • Hirota K, Komatsu G, Yamashita M et al (1992) Formation, characterization and sintering of alkoxy-derived bismuth vanadate. Mat Res Bull 27(7):823–830

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahenmann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69

    Article  CAS  Google Scholar 

  • Ichinose N, Ozaki Y, Kashu S (1992) Superfine particle technology. Springer, London

    Book  Google Scholar 

  • Ihara T, Miyoshi M, Triyama Y, Marsumato O, Sugihara S (2003) Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl Catal B 42:403–409

    Google Scholar 

  • Institute of Nanotechnology (2001) Featured report (Online). http://www.nano.org.uk/esant4.htm. Accessed 26 Nov 2002

  • Ishibashi KI (2000) Generation and deactivation processes of super oxide formed on TiO2 film illuminated by very weak UV light in air or water. J Phys Chem B 104:4934–4938

    Article  CAS  Google Scholar 

  • Jegadeesan G, Mondal K, Lalvani SB (2005) Arsenate remediation using nanosized modified zerovalent iron particles. Environ Prog 24(3):289–296

    Article  CAS  Google Scholar 

  • Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. CR Chim 6:999–1007

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nanoscale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  • Khan EU, Kane RL, Patrinos AA, Kripowicz RS, Krebs MA (2003) U.S. and global carbon reductions: the role of advanced fossil and non-fossil technologies, sequestration and research (Online). http://www.worldenergy.org/wecgeis/publications/default/tech_papers/17th_congress/3_4_07.asp. Accessed 2 May 2003

  • Kim YC, Sasaki S, Yano K, Ikebukuro K, Haphimoto K, Karube I (2001) Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis. Anal Chim Acta 432(59)

    Google Scholar 

  • Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213

    Article  CAS  Google Scholar 

  • Kudo A, Omori K, Kato H (1999) A novel process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Amer Chem Soc 121:11459–11467

    Article  CAS  Google Scholar 

  • Kudo A, Kato H, Tokunaga S (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. J Chem Mater 12:4624–4628

    Google Scholar 

  • Li XQ, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638–4642

    Article  CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122

    Article  CAS  Google Scholar 

  • Li X, Hu C, Wang X et al (2012) Photocatalytic activity of CdS nanoparticles synthesized by a facile composite molten salt method. Appl Surf Sci 258:4370–4376

    Article  CAS  Google Scholar 

  • Lien HL, Jhao YS, Chen LH (2007) Effect of heavy metals on dechlorination of carbon tetrachloride by iron nano particles. Environ Eng Sci 24(1):21–30

    Article  CAS  Google Scholar 

  • Liou YH, Lo SL, Kuan WH, Lin CJ, Weng SC (2006) Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res 40:2485–2492

    Article  CAS  Google Scholar 

  • Liu JB, Hao W, Shu W et al (2003) Hydrothermal preparation of BiVO4 powders. Mater Sci Eng B 104: 36–39

    Article  Google Scholar 

  • Liu Z, Fang P, Wang S et al (2012) Photocatalytic degradation of gaseous benzene with CdS-sensitized TiO2 film coated on fiberglass cloth. J Mol Catal A Chem 363–364:159–165

    Article  Google Scholar 

  • Mamadou SD, Savage N (2005) Nanoparticles and water quality. J Nano Res 7:325–330

    Article  Google Scholar 

  • Manning BA, Kiser JR, Kwon H, Kanel SR (2007) Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron. Environ Sci Technol 41:586–592

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053

    Article  CAS  Google Scholar 

  • Modun B, Morrissey J, Williams P (2000) The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol 8:231–237

    Article  CAS  Google Scholar 

  • Nair AS, Pradeep T (2004) Reactivity of Au and Ag nanoparticles with halocarbons. Appl Nanosci 59–63

    Google Scholar 

  • Obare SO, Meyer GJJ (2004) Nanostructured materials for environmental remediation of organic contaminants in water. Environ Sci Health A 39:2549

    Article  Google Scholar 

  • Oberdörste G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74: 1–8

    Article  Google Scholar 

  • Otto M, Floyd M, Bajpai S (2008) Nanotechnology for site remediation. Remediation 19(1):99–108

    Article  Google Scholar 

  • Pacific Northwest National Laboratory (2002) PNNL nanotechnology: grand challenges. (Online). http://www.pnl.gov/nano/grand/. Accessed 26 Nov 2002

  • Pirkanniemi K, Sillanpaa M (2002) Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48:1047–1060

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Reynolds GH (2001) ELR news & analysis, environmental regulation of nanotechnology: some preliminary observations (Online). http://www.foresight.org/impact/31.10681.pdf. Accessed 6 Nov 2002

  • Rickyerby D, Morrison M (2006) In nanotechnology and the environment: a European perspective. J Sci Technol Adv Mat 8:19–24

    Article  Google Scholar 

  • Rupa AV, Divakar D, Sivakumar T (2009) Titania and noble metals deposited titania catalysts in the photodegradation of tartrazine. Catal Lett 132:259–267

    Article  CAS  Google Scholar 

  • Saleh N, Sirk K, Liu YQ et al (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24(1):45–57

    Article  CAS  Google Scholar 

  • Shan GB, Xing JM, Zhang HY et al (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71:4497–4502

    Article  CAS  Google Scholar 

  • Sohn K, Kang SW, Ahn S et al (2006) Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 40(17):5514–5519

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL et al (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sun YP, Li X, Cao J, Zhang W, Wang HP (2006) Characterization of zero-valent iron particles. Adv Colloid Interface Sci 120:47–56

    Article  CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Article  Google Scholar 

  • United States Environment Protection Agency (2007) Nanotechnology white paper. EPA 100/B-07/001. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • United States Environment Protection Agency (2008) Nanotechnology for site remediation: fact sheet. EPA 542-F-08-009. U.S. Environmental Protection Agency, Washington, DC. http://www.epa.gov/tio/download/remed/542-f-08-009.pdf. Accessed 20 Oct 2009

  • Wallington K (2005) In emerging nanotechnologies for site remediation and waste treatment. Report, North Carolina State University

    Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wu NL, Lee MS (2004) Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydro Energ 29:1601–1605

    Article  CAS  Google Scholar 

  • Xia Q, Chena X, Zhaoa K, Liua J (2008) Synthesis and characterizations of polycrystalline walnut-like CdS nanoparticle by solvothermal method with PVP as stabilizer. Mater Chem Phys 111(1):98–105

    Article  CAS  Google Scholar 

  • Xu D, Sushil KK, Wenli D (2009) Preparation, characterization and photocatalytic activity of flowerlike cadmium sulfide nanostructure. Sep Purif Technol 68(1):61–64

    Article  Google Scholar 

  • Yu J, Zhang Y, Kudo A (2009) Synthesis and photocatalytic performances of BiVO4 by ammonia coprecipitation process. J Solid State Chem 182:223–228

    Article  CAS  Google Scholar 

  • Yuan J, Liu X, Akbulut O et al (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3(6):332–336

    Article  CAS  Google Scholar 

  • Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nano Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang W-X, Elliott DW (2006) Applications of iron nanoparticles for groundwater remediation. Remediation 16(2):7–21

    Article  Google Scholar 

  • Zhang A, Zhang J (2009) Characterization of visible-light-driven BiVO4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Spectrochim Acta Part A 73:336–341

    Article  Google Scholar 

  • Zhang L, Chen D, Jiao X (2006) Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, coloristic and photocatalytic properties. J Phys Chem B 110:2668–2673

    Article  CAS  Google Scholar 

  • Zhang A, Zhang J, Cui N et al (2009) Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst. J Mol Catal A Chemical 304:28–32

    Article  CAS  Google Scholar 

  • Zhao XJ, Hilliard LR, Mechery SJ et al (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Nat Acad Sci USA 101:15027–15032

    Article  CAS  Google Scholar 

  • Zhou L, Wang W, Liu S et al (2006) A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A Chem 252:120–124

    Article  CAS  Google Scholar 

  • Zhou L, Wang W, Zhang L et al (2007) Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism and photocatalytic property. J Phys Chem 111:13659–13664

    CAS  Google Scholar 

  • Zhu L, Ang S, Liu W-T (2004) Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 70:597–598

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Fulekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Fulekar, M.H., Pathak, B., Kale, R.K. (2014). Nanotechnology: Perspective for Environmental Sustainability. In: Fulekar, M., Pathak, B., Kale, R. (eds) Environment and Sustainable Development. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1166-2_7

Download citation

Publish with us

Policies and ethics