Skip to main content

Low-Temperature Photoluminescence of Sb-doped ZnO Nanowires Synthesized on Sb-coated Si Substrate by Chemical Vapor Deposition Method

  • Chapter
  • First Online:
  • 1654 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 180))

Abstract

The fabrication of p-type ZnO crystal is motivated by the need to develop ZnO semiconductor devices. On the other hand, it is well-known that high-quality nano-sized ZnO crystal can be easily obtained by various crystal growth techniques. Consequently, we tried to grow p-type Sb-doped ZnO nanowires by the chemical vapor deposition under various deposition temperature conditions and investigated their optical properties by photoluminescence (PL) spectroscopy. Multiple emission peaks caused by free excitons, excitons bound to donors and structural defects, and acceptors formed by Sb-doping were observed. The temperature dependence of PL confirmed the existence of acceptor level due to Sb-doping, and the activation energy of the acceptor level was estimated to be 125 meV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Sakai, S. Oyama, K. Noguchi, A. Fukuyama, T. Ikari, T. Okada, Phys. E 40, 2489 (2008)

    Article  Google Scholar 

  2. K. Sakai, K. Noguchi, A. Fukuyama, T. Ikari, T. Okada, Jap. J. Appl. Phys. 48, 085001 (2009)

    Google Scholar 

  3. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  4. S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Phys. Rev. Lett. 92, 155504 (2004)

    Article  ADS  Google Scholar 

  5. T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka, Phys. Stat. Sol. B 229, 911 (2002)

    Article  ADS  Google Scholar 

  6. F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 87, 152101 (2005)

    Article  ADS  Google Scholar 

  7. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Sol. B 241, 231 (2004)

    Article  ADS  Google Scholar 

  8. K. Thonke, T. Gruber, N. Teofilov, R. Schonfelder, A. Waag, R. Sauer, Phys. B 308–310, 945 (2001)

    Article  Google Scholar 

  9. Y. Dongqi, H. Lizhong, Q. Shuangshuang, Z Heqiu, S. Len, and L. Len, J. Phys. D: Appl. Phys. 42 (2009) 055110

    Google Scholar 

  10. D. Hwang, H. Kim, J. Lim, J. Oh, J. Yang, S. Park, K. Kim, D.C. Look, Y.S. Park, Appl. Phys. Lett. 86, 151917 (2005)

    Article  ADS  Google Scholar 

  11. F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 87, 252102 (2005)

    Article  ADS  Google Scholar 

  12. H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, J. Bian, Vacuum 85, 718 (2011)

    Article  ADS  Google Scholar 

  13. G. Hong, Z. Mingyu, J. Hong, W. Xuanzhang, Z. Zhiguo, J. Alloys Compd. 464, 234 (2008)

    Article  Google Scholar 

  14. A. Manoogian, J.C. Wooly, Can. J. Phys. 62, 285 (1984)

    ADS  Google Scholar 

  15. Y. Chem, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    Article  ADS  Google Scholar 

  16. D.W. Hamby, D.A. Lucca, M.J. Klopfstein, G. Cantwell, J. Appl. Phys. 93, 3214 (2003)

    Article  ADS  Google Scholar 

  17. F. Su, W. Wang, K. Ding, G. Li, Y. Liu, A.G. Joly, W. Chen, J. Phys. Chem. Solids 67, 2376 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Special Coordination Funds for Promoting Science and Technology from the Japan Science and Technology Agency, and a Grant-in-Aid by the Ministry of Education, Science, Sports, and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Sakai, K. et al. (2014). Low-Temperature Photoluminescence of Sb-doped ZnO Nanowires Synthesized on Sb-coated Si Substrate by Chemical Vapor Deposition Method. In: Rao, M., Okada, T. (eds) ZnO Nanocrystals and Allied Materials. Springer Series in Materials Science, vol 180. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1160-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1160-0_16

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1159-4

  • Online ISBN: 978-81-322-1160-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics