Skip to main content

Glycoside Hydrolases for Extraction and Modification of Polyphenolic Antioxidants

  • Chapter
  • First Online:
Advances in Enzyme Biotechnology

Abstract

Antioxidants are important molecules that are widely used by humans, both as dietary supplements and as additives to different types of products. In this chapter, we review how flavonoids, a class of polyphenolic antioxidants that are often found in glycosylated forms in many natural resources, can be extracted and modified using glycoside hydrolases (GHs). Glycosylation is a fundamental enzymatic process in nature, affecting function of many types of molecules (glycans, proteins, lipids as well as other organic molecules such as the flavonoids). Possibilities to control glycosylation thus mean possibilities to control or modify the function of the molecule. For the flavonoids, glycosylation affect both the antioxidative power and solubility. In this chapter we overview results on in vitro deglycosylation and glycosylation of flavonoids by selected GHs. For optimal enzymatic performance, desired features include a correct specificity for the target, combined with high stability. Poor specificity towards a specific substituent is thus a major drawback for enzymes in particular applications. Efforts to develop the enzymes as conversion tools are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berrin JG, Czjzek M, Kroon PA, McLauchlan WR, Puigserver A, Williamson G, Juge N (2003) Substrate (aglycone) specificity of human cytosolic β-glucosidase. Biochem J 373:41–48

    Article  PubMed  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    Article  PubMed  CAS  Google Scholar 

  • Bommarius AS, Broering JM, Chaparro-Riggers JF, Polizzi KM (2006) High-throughput screening for enhanced protein stability. Curr Opin Biotechnol 17:606–610

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735

    Article  PubMed  CAS  Google Scholar 

  • Chuenchor W, Pengthaisong S, Robinson RC, Yuvaniyama J, Oonanant W, Bevan DR, Esen A, Chen C-J, Opassiri R, Svasti J, Cairns JRK (2008) Structural insights into rice bglu1 β-glucosidase oligosaccharide hydrolysis and transglycosylation. J Mol Biol 377:1200–1215

    Article  PubMed  CAS  Google Scholar 

  • Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Lagana A (2011) Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat Prod Res 25:469–495

    Article  PubMed  CAS  Google Scholar 

  • Cuyckens F, Shahat AA, Van den Heuvel H, Abdel-Shafeek KA, El-Messiry MM, Seif-El Nasr MM, Pieters L, Vlietinck AJ, Claeys M (2003) The application of liquid chromatography-electrospray ionization mass spectrometry and collision-induced dissociation in the structural characterization of acylated flavonol O-glycosides from the seeds of Carrichtera annua. Eur J Mass Spectrom 9:409–420

    Article  CAS  Google Scholar 

  • Davis BG (2000) Recent developments in oligosaccharide synthesis. J Chem Soc Perkin Trans 1:2137–2160

    Article  Google Scholar 

  • Fu Y-J, Liu W, Zu Y-G, Tong M-H, Li S-M, Yan M-M, Efferth T, Luo H (2008) Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Food Chem 111:508–512

    Article  CAS  Google Scholar 

  • Gao C, Mayon P, MacManus DA, Vulfson EN (2000) Novel enzymatic approach to the synthesis of flavonoid glycosides and their esters. Biotechnol Bioeng 71:235–243

    Article  PubMed  CAS  Google Scholar 

  • Griffiths G, Trueman L, Crowther T, Thomas B, Smith B (2002) Onions—a global benefit to health. Phytother Res 16(7):603–615. doi:10.1002/ptr.1222

    Article  PubMed  CAS  Google Scholar 

  • Haddad AQ, Venkateswaran V, Viswanathan L, Teahan SJ, Fleshner NE, Klotz LH (2005) Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis 9:68–76

    Article  Google Scholar 

  • Hancock SM, Vaughan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10:509–519

    Article  PubMed  CAS  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    Article  PubMed  CAS  Google Scholar 

  • Hollman PCH, Arts ICW (2000) Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J Sci Food Agric 80:1081–1093

    Article  CAS  Google Scholar 

  • Hughes RJ, Croley TR, Metcalfe CD, March RE (2001) A tandem mass spectrometric study of selected characteristic flavonoids. Int J Mass Spec 210/211:371–385

    Article  CAS  Google Scholar 

  • Ishihara K, Nakajima N (2003) Structural aspects of acylated plant pigments: stabilization of flavonoid glucosides and interpretation of their functions. J Mol Catal B Enzym 23:411–417

    Article  CAS  Google Scholar 

  • Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299

    Article  CAS  Google Scholar 

  • Kapasakalidis PG, Rastall RA, Gordon MH (2009) Effect of a cellulase treatment on extraction of antioxidant phenols from black currant (Ribes nigrum L.) pomace. J Agric Food Chem 57:4342–4351

    Article  PubMed  CAS  Google Scholar 

  • Ketudat Cairns J, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Pozzo T, Megyeri M, Lindahl S, Sundin A, Turner C, Nordberg Karlsson E (2011) Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. BMC Biochem 12:11

    Article  PubMed  CAS  Google Scholar 

  • Kim Y-S, Yeom S-J, Oh D-K (2011) Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. J Agric Food Chem 59:11812–11818

    Article  PubMed  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  PubMed  CAS  Google Scholar 

  • Kong F (2003) Regio- and stereoselective synthesis of oligosaccharides with unprotected or lightly protected sugars as glycosyl acceptors. Curr Org Chem 7:841–865

    Article  CAS  Google Scholar 

  • Kulkarni TS, Khan S, Mahmood T, Sundin A, Lindahl S, Turner C, Logan DT, Nordberg Karlsson E (unpublished) Structure of Thermotoga neapolitana β-glucosidase 1A and comparison of active site mutants in hydrolysis of pNPGlc and quercetin-3 glucosides

    Google Scholar 

  • Landbo A-K, Meyer AS (2001) Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J Agric Food Chem 49:3169–3177

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Lee HJ (2006) The roles of polyphenols in cancer chemoprevention. Biofactors 26:105–121

    Article  PubMed  CAS  Google Scholar 

  • Lin JK, Weng MS (2006) Flavonoids as nutraceuticals. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 213–238

    Chapter  Google Scholar 

  • Lin S-C, Chang C-MJ, Deng T-S (2009) Enzymatic hot pressurized fluids extraction of polyphenolics from Pinus taiwanensis and Pinus morrisonicola. J Taiwan Inst Chem Eng 40:136–142

    Article  CAS  Google Scholar 

  • Lindahl S, Ekman A, Khan S, Wennerberg C, Borjesson P, Sjoberg PJR, Nordberg Karlsson E, Turner C (2010) Exploring the possibility of using a thermostable mutant of β-glucosidase for rapid hydrolysis of quercetin glucosides in hot water. Green Chem 12:159–168

    Article  CAS  Google Scholar 

  • Ljunger G, Adlercreutz P, Mattiasson B (1994) Enzymatic synthesis of octyl-β-glucoside in octanol at controlled water activity. Enzyme Microb Technol 16:751–755

    Article  CAS  Google Scholar 

  • Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Ann Rev Biochem 68:487–522

    Article  PubMed  CAS  Google Scholar 

  • Maier T, Göppert A, Kammerer D, Schieber A, Carle R (2008) Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. Eur Food Res Technol 227:267–275

    Article  CAS  Google Scholar 

  • Mamma D, Hatzinikolaou DG, Christakopoulos P (2004) Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. J Mol Catal B Enzym 27:183–190

    Article  CAS  Google Scholar 

  • Nakatani H (2001) Analysis of glycosidase-catalyzed transglycosylation reaction using probabilistic model. Arch Biochem Biophys 385:387–391

    Article  PubMed  CAS  Google Scholar 

  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    PubMed  CAS  Google Scholar 

  • Noguchi A, Inohara-Ochiai M, Ishibashi N, Fukami H, Nakayama T, Nakao M (2008) A novel glucosylation enzyme: molecular cloning, expression, and characterization of Trichoderma viride Jcm22452 α-amylase and enzymatic synthesis of some flavonoid monoglucosides and oligoglucosides. J Agric Food Chem 56:12016–12024

    Article  PubMed  CAS  Google Scholar 

  • Park T-H, Choi K-W, Park C-S, Lee S-B, Kang H-Y, Shon K-J, Park J-S, Cha J (2005) Substrate specificity and transglycosylation catalyzed by a thermostable β-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl Microbiol Biotechnol 69:411–422

    Article  PubMed  CAS  Google Scholar 

  • Robards K, Li X, Antolovich M, Boyd S (1997) Characterisation of citrus by chromatographic analysis of flavonoids. J Sci Food Agric 75:87–101

    Article  CAS  Google Scholar 

  • Sansenya S, Maneesan J, Ketudat Cairns JR (2012) Exchanging a single amino acid residue generates or weakens a +2 cellooligosaccharide binding subsite in rice beta-glucosidases. Carbohydr Res 351:130–133

    Article  PubMed  CAS  Google Scholar 

  • Stobiecki M, Malosse C, Kerhoas L, Wojlaszek P, Einhorn J (1999) Detection of isoflavonoids and their glycosides by liquid chromatography/electrospray ionization mass spectrometry in root extracts of lupin (Lupinus albus). Phytochem Anal 10:198–207

    Article  CAS  Google Scholar 

  • Tribolo S, Berrin JG, Kroon PA, Czjzek M, Juge N (2007) The crystal structure of human cytosolic β-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase. J Mol Biol 370:964–975

    Article  PubMed  CAS  Google Scholar 

  • Turner P, Mamo G, Nordberg Karlsson E (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9

    Article  PubMed  Google Scholar 

  • Turner C, Turner P, Jacobson G, Almgren K, Waldeback M, Sjoberg P, Nordberg Karlsson E, Markides KE (2006) Subcritical water extraction and β-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chem 8:949–959

    Article  CAS  Google Scholar 

  • Walle T (2004) Absorption and metabolism of flavonoids. Free Radic Biol Med 36(7):829–837

    Article  PubMed  CAS  Google Scholar 

  • Wang L-X, Huang W (2009) Enzymatic transglycosylation for glycoconjugate synthesis. Curr Opin Chem Biol 13:592–600

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Davies GJ, Davis BG (2007) A glycosynthase catalyst for the synthesis of flavonoid glycosides. Angew Chem 46:3885–3888

    Article  CAS  Google Scholar 

  • Zheng H-Z, Hwang I-W, Chung S-K (2009) Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes. J Zhejiang Univrsity Sci B 10:912–919

    Article  CAS  Google Scholar 

Download references

Acknowledgements 

The authors wish to thank Formas 2009-1527 (SuReTech), the European project AMYLOMICS and the Antidiabetic Food Centre, a VINNOVA VINN Excellence Centre at Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Nordberg Karlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Ara, K.Z.G., Khan, S., Kulkarni, T.S., Pozzo, T., Karlsson, E.N. (2013). Glycoside Hydrolases for Extraction and Modification of Polyphenolic Antioxidants. In: Shukla, P., Pletschke, B. (eds) Advances in Enzyme Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1094-8_2

Download citation

Publish with us

Policies and ethics