Skip to main content

A Novel Approach for Different Morphological Characterization of ECG Signal

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 221))

Abstract

The earlier detection of Cardiac arrhythmia of ECG waves is important to prevent cardiac disorders. A good system depends heavily upon the precise and consistent estimate of ECG signal morphology i.e. QRS complex, T and P wave. From the benchmark data bases: MIT-BIH Arrhythmia, QT and European ST-T database the ECG is fetched then the noise is removed from the digitized ECG signal. To analyze various power spectrum of ECG signal Stationary Wavelet Transform (SWT) is applied to the de-noised signal. Based upon the spectrum QRS complex T and P waves are detected and also delineated using different amplitude threshold values. This gives simple and reliable method for the detection and delineation of the constituent waves from a given ECG signal has been the fundamental goal of automatic cardiac arrhythmia detection. This algorithm allows delineation of different morphologies of QRS complex P and T wave.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Laguna P, Jan´e R, Caminal P (1994) Automatic detection of wave boundaries in multi lead ECG signals: Validation with the CSE database. Comput Biomed Res 27(1):45–60

    Article  Google Scholar 

  2. Chouhan VS, Mehta SS (2008) Threshold-based detection of P and T-wave in ECG using new feature signal. Int J Comput Sci Net Secur 8(2):144–152

    Google Scholar 

  3. Weng B, Wang JJ, Michaud F, Blanco-Velasco M (2008) Atrial fibrillation detection using stationary wavelet transform analysis. Conf Proc IEEE Eng Med Biol Soc. 2008:1128–1131

    Google Scholar 

  4. Clayton R, Murray A, Campell I (1994) Recognition of ventricular fibrillation using neural network. Med Biol Eng Comput 35: 611–626

    Google Scholar 

  5. Coast DA, Stern RM, Cano G, Briller SA (1990) An approach to cardiac arrhythmia analysis using hidden markov models. IEEE Trans Biomed Eng 37: 826–836

    Google Scholar 

  6. Dokur Z, Olmez T, Yazgan E (1999) Comparision of discrete wavelet and fourier transform for ECG beat classification. Electron Lett 35:1502–1504

    Article  Google Scholar 

  7. Li C, Zheng C, Tai C (1995) Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng 42:21–28

    Article  Google Scholar 

  8. Alfred L, Endt P, Oeff M, Trahms L (2001) Variability of the QRS Signal in High-Resolution ECG and MCG. IEEE Trans Biomed Eng 38:133–143

    Google Scholar 

  9. Martinez JP, Almeida R, Olmos S, Rocha AP, Laguna P A wavelet-based ECG delineator: Evaluation on standard databases. IEEE Trans Biomed Eng 51(4)

    Google Scholar 

  10. Pandit SV (1996) ECG Baseline drift removal through STFT. In: 18th annual international conference of the ieee engineering in medicine and biology society, Amsterdam

    Google Scholar 

  11. Meyer CR, Keiser HN (1977) Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computational techniques. Comput Biomed Res 10:459–470

    Article  Google Scholar 

  12. Minami K, Nakajima H, Toyoshima T (1999) Real-time discrimination of beats of ventricular tachyarrhythmia with Fourier transform neural network. IEEE Trans Biomed Eng 46:179–185

    Article  Google Scholar 

  13. Osowski S, Linh TH (2001) ECG beat recognition using fuzzy hybrid neural. IEEE Trans Biomed Eng 44: 1265–1271

    Google Scholar 

Download references

Acknowledgments

The authors thank the Management and the Principal of Bannari Amman Institute of Technology, Sathyamangalam and Kumaraguru college of Technology, Coimbatore for providing excellent computing facilities and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

APPENDIX

APPENDIX

The amplitude thresholds in the presented algorithms can be grouped into three types. First, the thresholds used to decide if a pair of maximum moduli with opposite sign can account for a wave: \( \mathop \in \nolimits_{\text{QRS}}^{ 1} \),\( \mathop \in \nolimits_{\text{QRS}}^{ 2} \), \( \mathop \in \nolimits_{\text{QRS}}^{ 3} \), \( \mathop \in \nolimits_{\text{QRS}}^{ 4} \) (for QRS detection), \( \mathop \in \nolimits_{\text{T}} \) and \( \mathop \in \nolimits_{\text{P}} \). (in the T/P wave delineation). These thresholds are proportional to the RMS value of the WT at the corresponding scales. For QRS detection, in each expert of \( 2^{16} \) samples.

\( \in_{\text{QRS}}^{ 1} \) = RMS (\( {\text{W}}_{{ 2^{\text{i}} }} {\text{x[n]}} \)), i = 1, 2, 3

\( \in_{\text{QRS}}^{ 4} \) = 0.5RMS (\( {\text{W}}_{{ 2^{ 4} }} {\text{x[n]}} \)).

For T and P waves

\( \in_{\text{T}} \) = 0.25 RMS (\( {\text{W}}_{{ 2^{ 4} }} {\text{x[n]}} \)) where the RMS is measured in each interval between

\( \in_{\text{P}} \) = 0.02 RMS (\( {\text{W}}_{{ 2^{ 4} }} {\text{x[n]}} \)) two consecutive QRS. The morphology of QRS complexes and the type of T/P wave depend of number of significant maximum moduli. The thresholds to determine if they are significant, \( {{\upgamma}}_{{{\text{QRS}}_{\text{pre}} }} \), \( {{\upgamma}}_{{{\text{QRS}}_{\text{post}} }} \), \( {{\upgamma}}_{\text{T}} \) and \( {{\upgamma}}_{\text{P}} \) are related to the amplitude of the global maximum modulus within the corresponding search window (sw).

\( {{\upgamma}}_{{{\text{QRS}}_{\text{pre}} }} \)= 0.06 max(\( \left| {{\text{W}}_{{ 2^{ 2} }} {\text{x[n]}}} \right| \)), n \( \in {\text{SW}}_{\text{QRS}} \) A third group of thresholds are used to \( {{\upgamma}}_{{{\text{QRS}}_{\text{post}} }} \)= 0.09 max(\( \left| {{\text{W}}_{{ 2^{ 2} }} {\text{x[n]}}} \right| \)), n \( \in {\text{SW}}_{{_{\text{QRS}} }}^{{}} \) determine the onset/offset of QRS complex. They are proportional to the amplitude of the WT at the first/last maximum modulus of the complex or wave.

$$ \mathop {{\upxi}}\nolimits_{\text{QRSon}} = \left\{ \begin{gathered} 0. 0 5 {\text{W}}_{{ 2^{ 2} }} {\text{x[n}}_{\text{first}} ] , {\text{if\,W}}_{{ 2^{ 2} }} {\text{x[n}}_{\text{first}} ]> 0\hfill \\ 0. 0 7 {\text{W}}_{{ 2^{ 2} }} {\text{x[n}}_{\text{first}} ] , {\text{if\,W}}_{{ 2^{ 2} }} {\text{x[n}}_{\text{first}} ]< 0\hfill \\ \end{gathered} \right. $$
$$ \mathop {{\upxi}}\nolimits_{\text{QRSend}} = \left\{ \begin{gathered} 0. 1 2 5 {\text{W}}_{{ 2^{ 2} }} {\text{x[n}}_{\text{last}} ] , {\text{if\,W}}_{{ 2^{ 2} }} {\text{x[n}}_{\text{last}} ]> 0\hfill \\ 0. 7 1 {\text{W}}_{{ 2^{ 2} }} {\text{x[n}}_{\text{last}} ] , {\text{if\,W}}_{{ 2^{ 2} }} {\text{x[n}}_{\text{last}} ]< 0\hfill \\ \end{gathered} \right. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this paper

Cite this paper

Harikumar, R., Shivappriya, S.N. (2013). A Novel Approach for Different Morphological Characterization of ECG Signal. In: S, M., Kumar, S. (eds) Proceedings of the Fourth International Conference on Signal and Image Processing 2012 (ICSIP 2012). Lecture Notes in Electrical Engineering, vol 221. Springer, India. https://doi.org/10.1007/978-81-322-0997-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0997-3_2

  • Published:

  • Publisher Name: Springer, India

  • Print ISBN: 978-81-322-0996-6

  • Online ISBN: 978-81-322-0997-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics