Skip to main content

Rhizobacteria in Management of Agroecosystem

  • Chapter
  • First Online:
  • 2203 Accesses

Abstract

Agriculture has a long history of research targeted at understanding how to improve the effectiveness of root symbionts, viz., rhizobia and mycorrhiza. A promising approach has been employed to understand how natural selection regulates changes in mutualistic interactions. A descriptive knowledge of basic evolutionary processes can be employed to develop agricultural management practices that favor the most effective symbionts. Mutually beneficial interactions between plant and associated rhizospheric microorganisms are ubiquitous which is important for ecosystem functioning. Plant-mediated mineralization for nutrient acquisition in agroecosystem would reduce the potential for nutrient losses because of tight coupling between net mineralization of N and P and plant uptake in the rhizosphere. Microorganisms and their products in the rhizosphere react to the many metabolites that are released by plant roots in a variety of positive, negative, and neutral ways. Such interactions can influence plant growth and development, change nutrient dynamics, and alter plant’s susceptibility to biotic and abiotic stresses. This benefit can either persist or lost in well-fertilized agricultural soils where nutrients are readily available to plants and symbionts that reduce growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alguacil MM, Lumini E, Roldan A, Salinas-Garcia JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  PubMed  CAS  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agro-ecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Alvey S, Yang C-H, Buerkert A, Crowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biol Fertil Soils 37:73–82

    Google Scholar 

  • Aoyama M, Angers DA, ŃDayegamiye A, Bissonnette N (2000) Metabolism of 13C-labelled glucose in aggregates from soil with manure application. Soil Biol Biochem 32:295–300

    Article  CAS  Google Scholar 

  • Arif M, Khan MA, Akbar H, Ali S (2006) Prospects of wheat as a dual purpose crop and its impact on weeds. Pak J Weed Sci Res 12:13–17

    Google Scholar 

  • Barea J-M, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci U S A 102:1302–1305

    Article  PubMed  CAS  Google Scholar 

  • Belcher K, Boehm M, Fulton M (2004) Agroecosystem sustainability: a system simulation model approach. Agr Syst 79:225–241

    Article  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J, Frey Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp., in the mycelium of the ecto-mycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243–4248

    Article  PubMed  CAS  Google Scholar 

  • Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. J Soil Sci Plant Nutr 8:9–18

    Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    PubMed  Google Scholar 

  • Cavigelli MA, Robertson GP (2001) Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol Biochem 33:297–310

    Article  CAS  Google Scholar 

  • Cheng W, Johnson DW, Fu S (2003) Rhizosphere effects on decomposition: control of plant species, phenology, and fertilization. Soil Sci Soc Am J 67:1418–1427

    Article  CAS  Google Scholar 

  • Clergue B, Amiaud B, Pervanchon F, Lasserre-Joulin F, Plantureure S (2005) Biodiversity: function and assessment in agricultural areas. A Rev Agron Sustain Dev 25:1–15

    Article  Google Scholar 

  • Cornejo P, Rubio R, Borie F (2009) Mycorrhizal propagule persistence in a succession of cereals in a disturbed and undisturbed andisol fertilized with two nitrogen sources. Chil J Agric Res 69:426–434

    Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Denison RF, Bledsoe C, Kahn M, Ó Gara F, Simms EL, Thomashow LS (2003a) Cooperation in the rhizosphere and the “free rider” problem. Ecology 84(4):838–845

    Article  Google Scholar 

  • Denison R-F, Kiers ET, West S-A (2003b) Darwinian agriculture: when can humus find solutions beyond the reach of natural selection? Q Rev Biol 78(2):145–168

    Article  PubMed  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Eviner VT, Chapin FS III (2001) Plant species provide vital ecosystem functions for sustainable agriculture, rangeland management and restoration. Calif Agric 55:54–59

    Article  Google Scholar 

  • Fliessbach A, Mader P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768

    Article  CAS  Google Scholar 

  • Friend AD (2010) Terrestrial plant production and climate change. J Exp Bot 61:1293–1309

    Article  PubMed  CAS  Google Scholar 

  • Gadkar V, Driver JD, Rillig MC (2006) A novel in vitro cultivation system to produce and isolate soluble factors released from hyphae of arbuscular mycorrhizal fungi. Biotechnol Lett 28:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Galloway JN (2000) Nitrogen mobilization in Asia. Nutr Cycl Agroecosyst 57:1–12

    Article  Google Scholar 

  • Gaur R, Shani N, Kawaljeet, Johri BN, Rossi P, Aragno M (2004) Diacetyl Phloroglucinol-producing Pseudomonas do not influence AM fungi in wheat rhizosphere. Curr Sci 86:453–457

    CAS  Google Scholar 

  • Gianinazzi S, Vosatka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    Article  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Arbuscular mycorrhizas: physiology and functions. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer Academic Publishers, Dordrecht, pp 239–262

    Chapter  Google Scholar 

  • Gurr GM, Wratten SD, Luna JM (2003) Multifunction agriculture biodiversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11

    Article  Google Scholar 

  • Heinemeyer A, Ridgway KP, Edwards EJ, Benham DG, Young JPW, Fitter AH (2004) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob Chang Biol 10:52–64

    Article  Google Scholar 

  • Hobbs P, Sayer K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc B 363:543–555

    Article  Google Scholar 

  • IPCC (2007) Impacts, adaptation and vulnerability. In: Parry ML, Canziani O, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • Izaurralde R, Rosenberg N, Brown R, Thomson A (2003) Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States Part II. Regional agricultural production in 2030 and 2095. Agr Forest Meteorol 117:97–122

    Article  Google Scholar 

  • Janssen W, Braunschweigg T (2003) Trends in the organization and financing of agricultural research in developed countries: implications for developing countries. ISNAR research report no. 22, International Service for National Agricultural Research (ISNAR), The Hague

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79

    Article  CAS  Google Scholar 

  • Johri BN (2001) Technology development and demonstration of a new bacterial inoculant (GRP3) for improved legume production. UP Govt., Project Report

    Google Scholar 

  • Karlen LD, Buhler DD, Ellusbury MM, Andrews SS (2002) Soil, weeds and insect management strategies for sustainable agriculture. J Biol Sci 2:58–62

    Article  Google Scholar 

  • Kassam A, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustain 7:292–320

    Article  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol (Ornston LN, Balows A, Gottesman-Susan E, eds), 211–236

    Google Scholar 

  • Khan MA, Marwat KB, Hassan G, Shah WA (2002) Effect of different weed free periods on the growth and yield of wheat. Pak J Agric Agric Eng Vet Sci 18:30–33

    Google Scholar 

  • Khan I, Hassan G, Khan MI, Khan IA (2004) Efficacy of some new herbicidal molecules on grassy and broadleaf weeds in wheat-II. Pak J Weed Sci Res 10:33–38

    Google Scholar 

  • Kiers ET, West SA, Denison RF (2002) Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. J Appl Ecol 39:745–754

    Article  Google Scholar 

  • Kouno K, Wu J, Brookes PC (2002) Turnover of biomass C and P in soil following incorporation of glucose or ryegrass. Soil Biol Biochem 34:617–622

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant-growth promoting rhizobacteria. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 86:1–25

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461

    Article  PubMed  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 569:1729–1739

    Article  Google Scholar 

  • Nakamoto T, Yamagishi J, Miura F (2006) Effect of reduced tillage on weeds and soil organisms in winter wheat in summer maize cropping on humic andosols in central Japan. Soil Tillage Res 85:94–106

    Article  Google Scholar 

  • Oehl F, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Peacock AD, Muller MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC (2001) Soil microbial community resources to dairy manure or ammonium nitrate applications. Soil Biol Biochem 33:1011–1019

    Article  CAS  Google Scholar 

  • Pregitzer KS, Zak DR, Loya WM, Karberg NJ, King JS, Burton AJ (2006) The contribution of root systems to biogeochemical cycles in a changing world. In: Cardon ZG, Whitebeck JL (eds) The rhizosphere: an ecological perspective. Elsevier, Oxford, pp 155–178

    Google Scholar 

  • Richter DB, Oh NH, Fimmen R, Jackson J (2006) The rhizosphere and soil formation. In: Cardon ZG, Whitebeck JL (eds) The rhizosphere: an ecological perspective. Elsevier, Oxford, pp 179–200

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis (DGGE): plant-dependent enrichment and seasonal shift revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  • Smeding FW, de Snoo GR (2003) A concept of food-web structure in organic arable farming systems. Landsc Urban Plan 65:219–236

    Article  Google Scholar 

  • Squartini A (2003) Functional ecology of the Rhizobium-legume symbiosis. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil plant interface. Marcel Dekker, New York, pp 297–326

    Google Scholar 

  • Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century-old manure-treated agro-ecosystem. Appl Environ Microbiol 70:5868–5874

    Article  PubMed  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaji N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Vance CP, Unde SC, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resources. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant and Soil 255:571–586

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wright SF, Green VS, Cavigelli MA (2007) Glomalin in aggregate size classes from three different farming systems. Soil Tillage Res 94:546–549

    Article  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y-G, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil– plant systems. Trends Plant Sci 8:407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Some of the work reported in this chapter has been supported through a Silver Jubilee Fellowship of the Madhya Pradesh Council of Science & Technology (MPCST) to BNJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Johri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Choudhary, D.K., Johri, B.N. (2013). Rhizobacteria in Management of Agroecosystem. In: Kuhad, R., Singh, A. (eds) Biotechnology for Environmental Management and Resource Recovery. Springer, India. https://doi.org/10.1007/978-81-322-0876-1_3

Download citation

Publish with us

Policies and ethics