Skip to main content

Animal Models of Breast Cancer

  • Chapter
  • First Online:
Omics Approaches in Breast Cancer
  • 1921 Accesses

Abstract

Several animal models have been used to investigate the etiology and to understand the mechanism of breast carcinogenesis. Advances in cancer management relied on the use of animal models to discover and develop new cancer preventive and therapeutic strategies. Animal models have the advantage of the presence of stromal and 3D structures, which were lacking in the in vitro cell culture preclinical evaluations. Xenograft animal models combined in vitro and in vivo models to overcome the dissimilarity between genetics and other biomarkers of animals and their human counterparts. This chapter will illustrate the various animal models used in breast cancer and their relevance to human breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Youlden DR, Cramb SM, Dunn NA, Muller JM, Pyke CM, Baade PD. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 2012;36(3):237–48.

    PubMed  Google Scholar 

  2. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61:409–18.

    PubMed  Google Scholar 

  3. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Altekruse SF, et al., editors. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). Bethesda: National Cancer Institute. http://seer.cancer.gov/csr/1975_2009_pops09/, based on Nov 2011 SEER data submission, posted to the SEER website 2012.

  4. Curado MP. Breast cancer in the world: incidence and mortality. Salud Publica Mex. 2011;53:372–84.

    PubMed  Google Scholar 

  5. King RJB, Robins MW. Cancer biology. 3rd ed. Harlow: Pearson Education Ltd.; 2006.

    Google Scholar 

  6. Kleinsmith LJ. Principles of cancer biology. San Francisco: Pearson Education, Inc.; 2006.

    Google Scholar 

  7. Ban KA, Godellas CV. Epidemiology of Breast Cancer. Surg Oncol Clin N Am. 2014;23(3):409–22.

    Google Scholar 

  8. World Health Organization: Tumours of the Breast and Female Genital Organs. Oxford [Oxfordshire]: Oxford University Press. 2003. ISBN 92-832-2412-4.

    Google Scholar 

  9. Mulas J, Reymundo C. Animal models of human breast carcinoma: canine and feline neoplasms. Revista de Oncología. 2000;2(6):274–81.

    Google Scholar 

  10. Rous P. A transmissible avian neoplasm (sarcoma of the common fowl). J Exp Med. 1910;12:696–705.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Van Epps ML. Peyton Rous: father of the tumor virus. J Exp Med. 2005;201:320.

    PubMed Central  Google Scholar 

  12. Wagner KU. Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res. 2004;6:31–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Pinho SS, Carvalho S, Cabral J, Reis CA, Gärtner F. Canine tumors: a spontaneous animal model of human carcinogenesis. Transl Res. 2012;159(3):165–72.

    PubMed  Google Scholar 

  14. Strandberg JD, Goodman DG. Animal model of human disease: canine mammary neoplasia. Am J Pathol. 1974;75(1):225–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Kim JB, O’Hare MJ, Stein R. Models of breast cancer: is merging human and animal models the future? Breast Cancer Res. 2004;6:22–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    PubMed  CAS  Google Scholar 

  17. Crow JF. C. C. little, cancer and inbred mice. Genetics. 2002;161(4):1357–61.

    PubMed  PubMed Central  Google Scholar 

  18. Bittner JJ. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science. 1935;84:162.

    Google Scholar 

  19. Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene. 2000;19:992–1001.

    PubMed  CAS  Google Scholar 

  20. Bittner JJ. Possible relationship of estrogenic hormones, genetic susceptibility and milk influence in the production of mammary cancer in mice. Cancer Res. 1943;2:710–21.

    Google Scholar 

  21. Russo IH, Russo J. Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect. 1996;104:938–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8(2):128–35.

    PubMed  CAS  Google Scholar 

  23. Ott WR, Roberts JW. Everyday exposure to toxic pollutants. Sci Am. 1988;278(2):86–91.

    Google Scholar 

  24. Abelson PH. Risk assessment of low-level exposure. Science. 1994;265(5178):1507.

    PubMed  CAS  Google Scholar 

  25. Kaiser J. Toxicology: just how bad is dioxin? Science. 2000;288(5473):1941–4.

    PubMed  CAS  Google Scholar 

  26. Gammon MD, Wolff MS, Neugut AI, Eng SM, Teitelbaum SL, Britton JA, et al. Environmental toxins and breast cancer on long Island. II. Organochlorine compound levels in blood. Cancer Epidemiol Biomarkers Prev. 2002;11(8):686–97.

    PubMed  CAS  Google Scholar 

  27. El-Abd E, Hassan A, Faied W, Zaki S, Sobhi A, El-Swedy S, Fatema Soliman. Clinical relevance of Hif-1α, Cox-2, leptin, and prolactin as hypoxic markers in breast cancer. AAJC. 2012;11(4):237–46.

    Google Scholar 

  28. Zurlo J, Squire RA. Is saccharin safe? Animal testing revisited. J Natl Cancer Inst. 1998;90(1):2–3.

    PubMed  CAS  Google Scholar 

  29. Russo J, Calaf G, Russo IH. A critical approach to the malignant transformation of human breast epithelial cells. Crit Rev Oncog. 1993;4:403–17.

    PubMed  CAS  Google Scholar 

  30. Dogliotti E, Hainaut P, Hernandez T, D’Errico M, DeMarini DM. Mutation spectra resulting from carcinogen exposure: from model systems to cancer-related genes. Recent Results Cancer Res. 1998;154:97–124.

    PubMed  CAS  Google Scholar 

  31. McGregor DB, Rice JM, Venitt S. The use of short and medium-term tests for carcinogens and data on genetic effects in carcinogenic hazard evaluation. Lyons: IARC press; 1999.

    Google Scholar 

  32. Rouse J, Jackson SP. Interfaces between the detection, signaling and repair of DNA damage. Science. 2002;297:547–51.

    PubMed  CAS  Google Scholar 

  33. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, Van Zwieten MJ. Comparative study of human and rat mammary tumorigenesis. Lab Invest. 1990;62:1–32.

    Google Scholar 

  34. Medina D, Smith GH. Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J Natl Cancer Inst. 1999;91:967–9.

    PubMed  CAS  Google Scholar 

  35. Ip C. Mammary tumorigenesis and chemoprevention studies in carcinogen-treated rats. J Mammary Gland Biol. 1996;1(1):37–47.

    CAS  Google Scholar 

  36. McCormick DL, Adamowski CB, Fiks A, Moon RC. Life time dose response relationship for mammary tumor induction by a single administration of MNU. Cancer Res. 1981;41:1690–4.

    PubMed  CAS  Google Scholar 

  37. Thompson HJ, Singh M. Rat models of premalignant breast disease. J Mammary Gland Biol Neoplasia. 2000;5(4):409–20.

    PubMed  CAS  Google Scholar 

  38. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Cember H, Johnson T. Introduction to health physics. 4th ed. New York: McGraw-Hill Medical; 2008.

    Google Scholar 

  40. Wakeford R. The cancer epidemiology of radiation. Oncogene. 2004;23:6404–28.

    PubMed  CAS  Google Scholar 

  41. Martin A, Harbison SA. An introduction to radiation protection. 3rd ed. London: Chapman and Hall; 1987.

    Google Scholar 

  42. Turner JE. Atoms, radiation, and radiation protection. 3rd ed. Weinheim: Wiley; 2007.

    Google Scholar 

  43. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97(10):724–32.

    Google Scholar 

  44. National Academy of Science. The effects on populations of exposure to low levels of ionizing radiation. BEIR Committee on the Biological Effects of Ionizing Radiations, National Research Council. Somatic effects: Cancer. Washington, D.C: National Academy Press; 1980. p. 135–58.

    Google Scholar 

  45. Hancock SL, Tucker MA, Hoppe RT. Breast cancer after treatment of Hodgkin’s disease. J Natl Cancer Inst. 1993;85:25–31.

    PubMed  CAS  Google Scholar 

  46. Land CE, Boice JD, Shore RE, Norman JE, Tokunaga M. Breast cancer risk from low-dose exposures to ionizing radiation: results of parallel analysis of three exposed populations of women. J Natl Cancer Inst. 1980;65:353–76.

    PubMed  CAS  Google Scholar 

  47. Imaoka T, Nishimura M, Iizuka D, Daino K, Takabatake T, Okamoto M, et al. Radiation-induced mammary carcinogenesis in rodent models: what’s different from chemical carcinogenesis? J Radiat Res. 2009;50:281–93.

    PubMed  CAS  Google Scholar 

  48. Broerse JJ, Hennen LA, Klapwijk WM, Solleveld HA. Mammary carcinogenesis in different rat strains after irradiation and hormone administration. Int J Radiat Biol. 1987;51:1091–100.

    CAS  Google Scholar 

  49. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.

    PubMed  CAS  Google Scholar 

  50. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol. 2007;1(1):84–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Hagemann T, Robinson SC, Schulz M, Trümper L, Balkwill FR, Binder C. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases. Carcinogenesis. 2004;25:1543–9.

    PubMed  CAS  Google Scholar 

  52. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65:5278–83.

    PubMed  CAS  Google Scholar 

  53. Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, et al. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A. 2006;103:5454–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Andrechek ER, Nevins JR. Mouse models of cancers: opportunities to address heterogeneity of human cancer and evaluate therapeutic strategies. J Mol Med. 2010;88:1095–100.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Isaacson JH, Cattanach BM. Report. Mouse News Lett. 1962;27:31.

    Google Scholar 

  56. Kindred B. Antibody response in genetically thymus-less nude mice injected with normal thymus cells. J Immunol. 1971;107:1291–5.

    PubMed  CAS  Google Scholar 

  57. Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol. 1991;9:323–50.

    PubMed  CAS  Google Scholar 

  58. Nakajima PB, Bosma MJ. Variable diversity joining recombination: nonhairpin coding ends in thymocytes of SCID and wild type mice. J Immunol. 2002;169:3094–104.

    PubMed  CAS  Google Scholar 

  59. Gandhi A, Holland PA, Knox WF, Potten CS, Bundred NJ. Effects of a pure antiestrogen on apoptosis and proliferation within human breast ductal carcinoma in situ. Cancer Res. 2000;60:4284–8.

    PubMed  CAS  Google Scholar 

  60. Chan KC, Knox WF, Gee JM, Morris J, Nicholson RI, Potten CS, Bundred NJ. Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res. 2002;62:122–8.

    PubMed  CAS  Google Scholar 

  61. Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR, et al. Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol. 2003;21:645–51.

    PubMed  CAS  Google Scholar 

  62. Hurst J, Maniar N, Tombarkiewicz J, Lucas F, Roberson C, Steplewski Z, et al. A novel model of a metastatic human breast tumor xenograft line. Br J Cancer. 1993;68:274–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. 2005;26:513–23.

    PubMed  CAS  Google Scholar 

  64. O’Hare MJ. Breast cancer. In: Masters JRW, editor. Human cancer in primary culture, a handbook. London: Kluwer Academic Publishers; 1991. p. 271–86.

    Google Scholar 

  65. Sultan AS, Xie J, LeBaron MJ, Ealley LE, Nevalainen MT, Rui H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene. 2005;24(5):746–60.

    PubMed  CAS  Google Scholar 

  66. Yang J, Guzman R, Nandi S. Histomorphologically intact primary human breast lesions and cancers can be propagated in nude mice. Cancer Lett. 2000;159:205–10.

    PubMed  CAS  Google Scholar 

  67. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331–41.

    PubMed  CAS  Google Scholar 

  68. Parmar H, Young P, Emerman JT, Neve RM, Dairkee S, Cunha GR. A novel method for growing human breast epithelium in vivo using mouse and human mammary fibroblasts. Endocrinology. 2002;143:4886–96.

    PubMed  CAS  Google Scholar 

  69. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 2001;15:50–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Shekhar MPV, Werdell J, Santner SJ, Pauley RJ, Tait L. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res. 2001;61:1320–6.

    PubMed  CAS  Google Scholar 

  71. O’Hare MJ, Bond J, Clarke C, Takeuchi Y, Atherton AJ, Berry C, et al. Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc Natl Acad Sci U S A. 2001;98:646–51.

    PubMed  PubMed Central  Google Scholar 

  72. Hennighausen L, Robinson GW. Think globally, act locally: the making of a mouse mammary gland. Genes Dev. 1998;12:449–55.

    PubMed  CAS  Google Scholar 

  73. Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989;8:98–101.

    PubMed  CAS  Google Scholar 

  74. Polyak K, Kalluri R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol. 2010;2:a003244.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Patel SA, Dave MA, Murthy RG, Helmy KY, Rameshwar P. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev. 2011;5:93–102.

    PubMed  PubMed Central  Google Scholar 

  76. Siclari VA, Guise TA, Chirgwin JM. Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev. 2006;25:621–33.

    PubMed  CAS  Google Scholar 

  77. Luis-Ravelo D, Anton I, Vicent S, Hernandez I, Valencia K, Zandueta C, et al. Tumor-stromal interactions of the bone microenvironment: in vitro findings and potential in vivo relevance in metastatic lung cancer models. Clin Exp Metastasis. 2011;28:779–91.

    PubMed  CAS  Google Scholar 

  78. Sugiyama Y, Kato M, Chen FA, Williams SS, Kawaguchi Y, Miya K, et al. Human inflammatory cells within the tumor microenvironment of lung tumor xenografts mediate tumor growth suppression in situ that depends on and is augmented by interleukin-12. J Immunother. 2001;24:37–45.

    PubMed  CAS  Google Scholar 

  79. Iwanuma Y, Chen F-A, Egilmez NK, Takita H, Bankert RB. Antitumor immune response of human peripheral blood lymphocytes coengrafted with tumor into severe combined immunodeficient mice. Cancer Res. 1997;57:2937–42.

    PubMed  CAS  Google Scholar 

  80. Coleman RE. Future directions in the treatment and prevention of bone metastases. Am J Clin Oncol. 2002;25:S32–8.

    PubMed  Google Scholar 

  81. Lynch CC, Hikosaka A, Acuff HB, Martin MD, Kawai N, Singh RK, et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell. 2005;7:485–96.

    PubMed  CAS  Google Scholar 

  82. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–405.

    PubMed  CAS  Google Scholar 

  83. Futakuchi M, Singh RK. Animal model for mammary tumor growth in the bone microenvironment. Breast Cancer. 2013;20(3):195–203.

    Google Scholar 

  84. Sadanandam A, Futakuchi M, Lyssiotis CA, Gibb WJ, Singh RK. A cross-species analysis of a mouse model of breast cancer-specific osteolysis and human bone metastases using gene expression profiling. BMC Cancer. 2011;11:304–13.

    PubMed  PubMed Central  Google Scholar 

  85. Blackshear PE. Genetically engineered rodent models of mammary gland carcinogenesis: an overview. Toxicol Pathol. 2001;29(1):105–16.

    PubMed  CAS  Google Scholar 

  86. Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. Breast Cancer Res. 2006;8(4):212.

    PubMed  PubMed Central  Google Scholar 

  87. Blanco MA, Kang Y. Signaling pathways in breast cancer metastasis- novel insights from functional genomics. Breast Cancer Res. 2011;13:206.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Kavanaugh C, Green JE. Nutritional genomics and proteomics in cancer prevention: the use of genetically altered mice for breast cancer prevention studies. J Nutr. 2003;133:2404S–9.

    PubMed  CAS  Google Scholar 

  89. Radisky DC, Hartmann LC. Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia. 2009;14:181–91.

    PubMed  PubMed Central  Google Scholar 

  90. Matulka LA, Wagner K. Models of breast cancer. Drug Discov Today: Dis Models (Cancer). 2005;2(1):1–6.

    CAS  Google Scholar 

  91. Ross SR. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses. 2010;2:2000–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Cardiff RD, Kenney N. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice. Cold Spring Harb Persepect Biol. 2011;3(6):1–13.

    Google Scholar 

  93. Wang XJ, Gu K, Xu JS, Li MH, Cao RY, Wu J, et al. Immunization with a recombinant GnRH vaccine fused to heat shock protein 65 inhibits mammary tumor growth in vivo. Cancer Immunol Immunother. 2010;59:1859–66.

    PubMed  CAS  Google Scholar 

  94. Millanta F, Citi S, Della Santa D, Porciani M, Poli A. COX-2 expression in canine and feline invasive mammary carcinomas: correlation with clinicopathological features and prognostic molecular markers. Breast Cancer Res Treat. 2006;98:115–20.

    PubMed  CAS  Google Scholar 

  95. De Maria R, Olivero M, Iussich S, Nakaichi M, Murata T, Biolatti B, Di Renzo MF. Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Res. 2005;65(3):907–12.

    PubMed  Google Scholar 

  96. Antuofermo E, Miller MA, Pirino S, Xie J, Badve S, Mohammed SI. Spontaneous mammary intraepithelial lesions in dogs-a model of breast cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(11):2247–56.

    PubMed  CAS  Google Scholar 

  97. Hahn KA, Bravo L, Avenell JS. Feline breast carcinoma as a pathologic and therapeutic model for human breast cancer. In Vivo. 1994;8(5):825–8.

    PubMed  CAS  Google Scholar 

  98. De Maria R, Maggiora P, Biolatti B, Prat M, Comoglio PM, Castagnaro M, Di Renzo MF. Feline STK gene expression in mammary carcinomas. Oncogene. 2002;21(11):1785–90.

    PubMed  Google Scholar 

  99. MacEwen EG, Patnaik AK, Harvey HJ, Panko WB. Estrogen receptors in canine mammary tumors. Cancer Res. 1982;42(6):2255–9.

    PubMed  CAS  Google Scholar 

  100. Uva P, Aurisicchio L, Watters J, Loboda A, Kulkarni A, Castle J. Comparative expression pathway analysis of human and canine mammary tumors. BMC Genomics. 2009;10:135.

    PubMed  PubMed Central  Google Scholar 

  101. Nieto A, Pérez-Alenza MD, Del Castillo N, Tabanera E, Castaño M, Peña L. BRCA1 expression in canine mammary dysplasias and tumors: relationship with prognostic variables. J Comp Pathol. 2003;128(4):260–8.

    PubMed  CAS  Google Scholar 

  102. Klopfleisch R, Gruber AD. Increased expression of BRCA2 and RAD51 in lymph node metastases of canine mammary adenocarcinomas. Vet Pathol. 2009;46(3):416–22.

    PubMed  CAS  Google Scholar 

  103. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A. 2005;102(38):13550–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Gupta PB, Kuperwasser C. Disease models of breast cancer. Drug Discov Today: Dis Models. 2004;1(1):9–16.

    Google Scholar 

  105. Lee CH, Kim WH, Lim JH, Kang MS, Kim DY, Kweon OK. Mutation and overexpression of p53 as a prognostic factor in canine mammary tumors. J Vet Sci. 2004;5(1):63–9.

    PubMed  Google Scholar 

  106. Klopfleisch R, Gruber AD. Differential expression of cell cycle regulators p21, p27 and p53 in metastasizing canine mammary adenocarcinomas versus normal mammary glands. Res Vet Sci. 2009;87(1):91–6.

    PubMed  CAS  Google Scholar 

  107. Gama A, Paredes J, Gärtner F, Alves A, Schmitt F. Expression of E-cadherin, P-cadherin and beta-catenin in canine malignant mammary tumors in relation to clinicopathological parameters, proliferation and survival. Vet J. 2007;177(1):45–53.

    PubMed  Google Scholar 

  108. Burrai GP, Mohammed SI, Miller MA, Marras V, Pirino S, Addis MF, et al. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions. BMC Cancer. 2010;10:156.

    PubMed  PubMed Central  Google Scholar 

  109. Graham JC, Myers RK. The prognostic significance of angiogenesis in canine mammary tumors. J Vet Intern Med. 1999;13(5):416–8.

    PubMed  CAS  Google Scholar 

  110. Ihemelandu CU, Leffall LD Jr, Dewitty RL, Naab TJ, Mezghebe HM, Makambi KH, et al. Molecular breast cancer subtypes in premenopausal and postmenopausal African American women: age-specific prevalence and survival. J Surg Res. 2007;143:109–18.

    Google Scholar 

  111. Wiencke JK. Impact of race/ethnicity on molecular pathways in human cancer. Nat Rev Cancer. 2004;4(1):79–84.

    PubMed  CAS  Google Scholar 

  112. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumors. Nature. 2000;406(6797):747–52.

    PubMed  CAS  Google Scholar 

  113. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 2001;98:10869–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Rhee J, Han SW, Oh DY, Kim JH, Im SA, Han W, et al. The clinicopathologic characteristics and prognostic significance of triple-negativity in node-negative breast cancer. BMC Cancer. 2008;8:307.

    PubMed  PubMed Central  Google Scholar 

  115. Andriechek ER, Nevins JR. Mouse models of cancers: opportunities to address heterogeneity of human cancer and evaluate therapeutic strategies. J Mol Med. 2010;88:1095–100.

    Google Scholar 

  116. Lanari C, Lamb CA, Fabris VT, Helguero LA, Soldati RO, Bottino MC, et al. The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer. 2009;16(2):333–50.

    PubMed  CAS  Google Scholar 

  117. The cancer genome atlas network. Comprehensive molecular portraits of human breast tumors. Nature. 2012;490(7418):61–70.

    PubMed Central  Google Scholar 

  118. Steele VE, Lubet RA, Moon RC. Preclinical animal models for the development of cancer chemoprevention drugs. In: Kelloff GJ, Hawk ET, Sigman CC, editors. Cancer chemoprevention, volume 2: strategies for cancer chemoprevention. Totowa: Humana Press Inc; 2005.

    Google Scholar 

  119. Nagasawa H, Mitamura T, Sakamoto S, Yamamoto K. Effects of lycopene on spontaneous mammary tumor development in SHN virgin mice. Anticancer Res. 1995;15:1173–8.

    PubMed  CAS  Google Scholar 

  120. Sharoni Y, Giron E, Rise M, Levy J. Effects of lycopene-enriched tomato oleoresin on 7,12-dimethylbenz[a]anthracene-induced rat mammary tumors. Cancer Detect Prev. 1997;21:118–23.

    PubMed  CAS  Google Scholar 

  121. Cohen LA, Zhao Z, Pittman B, Khachik F. Effect of dietary lycopene on N-methylnitrosourea-induced mammary tumorigenesis. Nutr Cancer. 1999;34:153–9.

    PubMed  CAS  Google Scholar 

  122. Cohen LA. A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Exp Biol Med. 2002;227:864–8.

    CAS  Google Scholar 

  123. Clarke R. The role of preclinical animal models in breast cancer drug development. Breast Cancer Res. 2009;11 Suppl 3:S22.

    PubMed  PubMed Central  Google Scholar 

  124. Weigelt B, Peterse JL, Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    PubMed  CAS  Google Scholar 

  125. Diamanti-Kandarakis E, Bourguignon J, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev. 2009;30:293–342.

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Pasquale S. Oral contraceptives: man and relationship significance of their effects into findings in animal models. Toxicol Pathol. 1989;17(2):396–400.

    PubMed  CAS  Google Scholar 

  127. Rudel RA, Fenton SE, Ackerman JM, Euling SY, Makris SL. Environmental exposures and mammary gland development: state of the science, public health implications, and research recommendations. Environ Health Perspect. 2011;119:1053–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Zheng W, Lee S. Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutr Cancer. 2009;61(4):437–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Bennett CN, Green JE. Genomic analyses as a guide to target identification and preclinical testing of mouse models of breast cancer. Toxicol Pathol. 2010;38(1):88–95.

    PubMed  PubMed Central  Google Scholar 

  130. Cheng L, Ramesh AV, Flesken-Nikitin A, Choi J, Nikitin YA. Mouse models for cancer stem cell research. Toxicol Pathol. 2010;38(1):62–71.

    PubMed  PubMed Central  Google Scholar 

  131. Fridriksdottir AJR, Petersen OW, Rønnov-jessen L. Mammary gland stem cells: current status and future challenges. Int J Dev Biol. 2011;55:719–29.

    PubMed  Google Scholar 

  132. Cardiff RD. The pathology of EMT in mouse mammary tumorigenesis. J Mammary Gland Biol Neoplasia. 2010;15:225–33.

    PubMed  PubMed Central  Google Scholar 

  133. Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gärtner F, Gruber AD. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol. 2011;48(1):98–116.

    PubMed  CAS  Google Scholar 

  134. Rivera P, von Euler H. Molecular biological aspects on canine and human mammary tumors. Vet Pathol. 2011;48(1):132–46.

    PubMed  CAS  Google Scholar 

  135. Misdorp W, Weijer K. Animal model of human disease: breast cancer. Am J Pathol. 1980;98(2):573–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Viste JR, Myers SL, Singh B, Simko E. Feline mammary adenocarcinoma: tumor size as a prognostic indicator. Can Vet J. 2002;43(1):33–7.

    PubMed  PubMed Central  Google Scholar 

  137. Ordás J, Millán Y, Dios R, Reymundo C, de Las Mulas JM. Proto-oncogene HER-2 in normal, dysplastic and tumorous feline mammary glands: an immunohistochemical and chromogenic in situ hybridization study. BMC Cancer. 2007;7:179.

    PubMed  PubMed Central  Google Scholar 

  138. Shan L, Wang S, Korotcov A, Sridhar R, Wang PC. Bioluminescent animal models of human breast cancer for tumor biomass evaluation and metastasis detection. Ethn Dis. 2008;18(2 Suppl 2):S2-65–9.

    Google Scholar 

  139. Mollard S, Mousseau Y, Baaj Y, Richard L, Cook-Moreau J, Monteil J, et al. How can grafted breast cancer models be optimized? Cancer Biol Ther. 2011;12(10):855–64.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. El-Abd PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

El-Abd, E.A., Sultan, A.S., Shalaby, E.A., Matalkah, F. (2014). Animal Models of Breast Cancer. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_15

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics