Skip to main content

Estimation of Species Richness of Large Vertebrates Using Camera Traps: An Example from an Indonesian Rainforest

  • Chapter
Book cover Camera Traps in Animal Ecology

Abstract

The number of biological species that occurs at a particular geographic unit, whether that be global, a biogeographic region, country, or national park, is of great relevance to the management and conservation of biodiversity. Major policy initiatives at the international, national, and regional levels have committed entire government programs to attaining measurable targets of this variable in the conservation of biodiversity (Danielsen et al. 2005). The Convention on Biodiversity lists a reduction in the rate of loss of biodiversity as a goal for 2010 and many of the indicators proposed to measure achievement of that goal are indices that hopefully track changes in species richness (United Nations Environment Programme 2002). It is unlikely that governments will be able to judge their progress without monitoring systems and indicators in place to assess the effectiveness of their interventions (Balmford et al. 2005). Species diversity usually refers to the number of species in a location or “species richness” (Schluter and Ricklefs 1993; Lande 1996). Species richness is often used as a state variable in evaluating the impact of management interventions and anthropogenic disturbance on biodiversity. One of the greatest hindrances to understanding and conserving biodiversity, however, is our inability to determine how many species we have and how fast that number is changing (Balmford et al. 2005; May 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpizar-Jara, R., J. D. Nichols, J. E. Hines, J. R. Sauer, K. P. Pollock, and C. S. Rosenberry. 2004. The relationship between species detection probability and local extinction probability. Oecologia 141:652–660

    Article  PubMed  Google Scholar 

  • Balmford, A., P. Crane, A. P. Dobson, R. E. Green, and G. M. Mace. 2005. The 2010 challenge: data availability, information needs and extraterrestrial linsights. Philosophical Transactions of the Royal Society of London, Series B 360:221–228

    Article  Google Scholar 

  • Boulinier, T., J. D. Nichols, J. R. Sauer, J. E. Hines, and K. P. Pollock. 1998. Estimating species richness: the importance of heterogeneity in species detectability. Ecology 79:1018–10288

    Article  Google Scholar 

  • Bunge, J. and M. Fitzpatrick. 1993. Estimating the number of species: a review. Journal of American Statistical Association 88:364–373

    Google Scholar 

  • Burnham, K. P. and D. E. Anderson. 2002. Model selection and multimodal inference: a practical information-theoretic approach, Second edition. Springer, New York

    Google Scholar 

  • Burnham, K. P. and W. S. Overton. 1978. Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65:623–633

    Article  Google Scholar 

  • Burnham, K. P. and W. S. Overton. 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology 60:927–936

    Article  Google Scholar 

  • Cam, E., J. D. Nichols, J. R. Sauer, J. E. Hines, and C. H. Flather. 2000. Relative species richness and community completeness: avian communities and urbanization in the mid-Atlantic states. Ecological Applications 10:1196–1210

    Article  Google Scholar 

  • Cam, E., J. D. Nichols, J. R. Sauer, and J. E. Hines. 2002a. On the estimation of species richness based on the accumulation of previously unrecorded species. Ecography 25:102–108

    Article  Google Scholar 

  • Cam, E., J. D. Nichols, J. E. Hines, J. R. Sauer, R. Alpizar-Jara, and C. H. Flather. 2002b. Disentangling sampling and ecological explanations underlying species-area relationships. Ecology 83:1118–1130

    Google Scholar 

  • Chambers, E. G. and G. U. Yule. 1942. Theory and observation in the investigation of accident causation. Journal of Royal Statistical Society Supplementum 7:89–109

    Article  Google Scholar 

  • Chao, A., S. M. Lee, and S. L. Jeng. 1992. Estimation of population size for capture–recapture data when capture probabilities vary by time and individual animal. Biometrics 48:201–216

    Article  PubMed  CAS  Google Scholar 

  • Colwell, R. K. and J. A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B 345:101–118

    Article  CAS  Google Scholar 

  • Corbett, A. S., R. A. Fischer, and C. B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12:42–58

    Article  Google Scholar 

  • Danielsen, F., N. D. Burgess, and A. Balmford. 2005. Monitoring matters: examining the potential of locally-based approaches. Biodiversity and Conservation 14:2507–2542

    Article  Google Scholar 

  • Good, I. J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Google Scholar 

  • Hines, J. E., T. Boulinier, J. D. Nichols, J. R. Sauer, and K. P. Pollock. 1999. COMDYN: software to study the dynamics of animal communities using a capture-recapture approach. Bird Study 46 (suppl.):S209–S217

    Google Scholar 

  • Karanth, K. U., J. D. Nichols, N. S. Kumar, and J. E. Hines. 2006. Assessing tiger population dynamics using photographic capture–recapture sampling. Ecology 87:2925–2937

    Article  PubMed  Google Scholar 

  • Kinnaird, M. F., E. W. Sanderson, T. G. O’Brien, H. T. Wibisono, and G. Woolmer. 2003. Deforestation trends in a tropical landscape and implications for forest mammals. Conservation Biology 17:245–257

    Article  Google Scholar 

  • Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Lynam, A. J., P. D. Round, and W. Y. Brockelman. 2006. Status of birds and large mammals in Thailand’s Dong Phayayen – Khao Yai forest complex. Biodiversity Research and Training Program and Wildlife Conservation Society, Bangkok

    Google Scholar 

  • MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knuson, and A. B. Franklin. 2003. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. P. Pollock, L. L. Bailey, and J. E. Hines. 2006. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic, New York

    Google Scholar 

  • Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Mao, C. X. and R. K. Colwell. 2005. Estimation of species richness: mixture models, the role of rare species, and inferential challenges. Ecology 86:1143–1153

    Article  Google Scholar 

  • May, R. M. 1988. How many species are there on earth? Science 241:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J. D. and K. P. Pollock. 1983. Estimating taxonomic diversity extinction rates, and speciation rates from fossil data using capture–recapture models. Paleobiology 64:253–260

    Google Scholar 

  • Nichols, J. D., R. W. Morris, C. Brownie, and K. P. Pollock. 1986. Sources of variation in extinction rates, turnover, and diversity of marine invertebrate families during the Paleozoic. Paleobiology 12:421–432

    Google Scholar 

  • Nichols, J. D., T. Boulinear, J. A. Hines, K. P. Pollock, and J. R. Sauer. 1998a. Estimating rates of local species extinction, colonization, and turnover in animal communities. Ecological Applications 8:1213–1225

    Google Scholar 

  • Nichols, J. D., T. Boulinear, J. A. Hines, K. P. Pollock, and J. R. Sauer. 1998b. Inference methods for spatial variation in species richness and community composition when not all species are detected. Conservation Biology 12:1390–1398

    Google Scholar 

  • O’Brien, T. G., M. F. Kinnaird, and H. T. Wibisono. 2003. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation 6:131–139

    Article  Google Scholar 

  • Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson. 1978. Statistical inference from capture data on closed animal populations. Wildlife Monographs 62:1–135

    Google Scholar 

  • Pollock, K. P. 1982. A capture–recapture design robust to unequality of capture. Journal of Wildlife Management 46:757–760

    Article  Google Scholar 

  • Pollock, K. P. and M. C. Otto. 1983. Robust estimation of population size in closed animal populations from capture–recapture experiments. Biometrics 52:639–649

    Google Scholar 

  • Preston, F. W. 1948. The commonness and rarity of species. Ecology 29:254–283

    Article  Google Scholar 

  • Schluter, D. and R. E. Ricklefs. 1993. Species diversity: an introduction to the problem. Pages 1–10 in R. E. Ricklefs and D. Schluter, editors. Species diversity in ecological communities. University of Chicago Press, Chicago

    Google Scholar 

  • Trolle, M. 2003a. Mammal survey in the Rio Jauaperi region, Rio Negro Basin, the Amazon, Brazil. Mammalia 67:75–83

    Article  Google Scholar 

  • Trolle, M. 2003b. Mammal survey in the southeastern Pantanal, Brazil. Biodiversity and Conservation 12:823–836

    Article  Google Scholar 

  • United Nations Environment Programme. 2002. Report on the sixth meeting of the Conference of the Parties to the Convention on Biological Diversity (UNEP/CBD/COP/6/20/Part2) Strategic Plan Decision VI/26

    Google Scholar 

  • Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Wibisono, H. T. 2006. Population ecology of Sumatran tigers (Panthera tigris sumatrae) and their prey in Bukit Barisan Selatan National Park, Sumatra, Indonesia. Unpubl. MSc. thesis, Univ. Massachusetts, 91 pp

    Google Scholar 

  • Williams, C. B. 1964. Patterns in the balance of nature. Academic, London

    Google Scholar 

  • Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of animal populations. Academic, San Diego, CA

    Google Scholar 

  • Zielinski, W. J., R. L. Truex, F. V. Schlexer, L. A. Campbell, and C. Carroll. 2005. Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USA. Journal of Biogeography 32:1385–1407

    Google Scholar 

Download references

Acknowledgements

Our research is a collaborative effort by the Wildlife Conservation Society and the Indonesian Ministry of Forestry’s Department for Protection and Conservation of Nature. Our research was funded by the Wildlife Conservation Society, the Save the Tiger Fund, a special project of the National Fish and Wildlife Foundation in partnership with the Exxon Mobil Corporation, the US Fish and Wildlife Service Rhinoceros and Tiger Conservation Fund and Princeton University Alumni Association. We would like to thank J. Ginsberg, M. Rao, L. Krueger, F. Bagley, and J. Seidensticker for their support and advice during this project. We also thank U. Wijayanto and I. Tanjung for assistance in data collection. C. Foley, S. Durant, and J Kingdon kindly provided information on Tanzania mammals. The manuscript benefited greatly from the comments of J. D. Nichols, A. F. O’Connell, K.U. Karanth, and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. O’Brien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

O’Brien, T.G., Kinnaird, M.F. (2011). Estimation of Species Richness of Large Vertebrates Using Camera Traps: An Example from an Indonesian Rainforest. In: O’Connell, A.F., Nichols, J.D., Karanth, K.U. (eds) Camera Traps in Animal Ecology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99495-4_13

Download citation

Publish with us

Policies and ethics